
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

A LINUX-BASED APPROACH TO LOW-COST
SUPPORT OF ACCESS CONTROL POLICIES

by

Paul C. Clark

September 1999

Thesis Advisor:
Second Advisor:

Cynthia E. Irvine
Dennis Volpano

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTBD 4

H9991U6 Ott

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE A LINUX-BASED APPROACH TO LOW-COST
SUPPORT OF ACCESS CONTROL POLICIES

AUTHOR(S) Clark, Paul C.

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/A VAIL ABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
It is vital to our country's political and economic future to adequately protect corporate and government information from

unauthorized disclosure and modification. Unfortunately, the current state of computer security is weak, especially when novice

adversaries can perform successful infiltrations of sensitive systems. Systems that enforce Mandatory Access Control (MAC) policies

are known to reduce some known security weaknesses, but such systems have seen limited use within the United States Government, and

they are rarely applied in the private sector. Some of this limited use is caused by a lack of exposure to systems able to enforce MAC

policies. This thesis presents an inexpensive approach to providing a system supporting MAC policies, allowing users an opportunity to

have hands-on experience with such a system. A detailed design for modifying the Linux operating system is given, allowing for the

flexible and simultaneous support of multiple policies. In particular, a design and detailed specification for the implementation of label-

based interfaces for the mandatory portions of the Bell and LaPadula secrecy model and the Biba integrity model have been developed.

Implementation of portions of this design has demonstrated the feasibility of this approach to label-based interfaces. This design has

potential for widespread use in computer security education, as well as broad application as a component in the ongoing Department of

Defense research of trusted computer system interfaces.

14. SUBJECT TERMS Mandatory Access Control, Security Policy, Linux,
Education

15. NUMBER OF
PAGES 189

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500
298 (Rev. 2-89)

Standard Form

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

A LINUX-BASED APPROACH TO LOW-COST SUPPORT OF
ACCESS CONTROL POLICIES

Paul C. Clark
B.S., California Polytechnic University, Pomona, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by:

GLf C fa4
Paul C. Clark

^1-Cynthia E. Irvine, Thesis Advisor

I^jsqnis Volpano, Second Reader

C.
Dan Boger, Gfeairman

Department of Computer Science

111

IV

ABSTRACT

It is vital to our country's political and economic future to adequately protect

corporate and government information from unauthorized disclosure and modification.

Unfortunately, the current state of computer security is weak, especially when novice

adversaries can perform successful infiltrations of sensitive systems. Systems that

enforce Mandatory Access Control (MAC) policies are known to reduce some known

security weaknesses, but such systems have seen limited use within the United States

Government, and they are rarely applied in the private sector. Some of this limited use is

caused by a lack of exposure to systems able to enforce MAC policies. This thesis

presents an inexpensive approach to providing a system supporting MAC policies,

allowing users an opportunity to have hands-on experience with such a system. A

detailed design for modifying the Linux operating system is given, allowing for the

flexible and simultaneous support of multiple policies. In particular, a design and

detailed specification for the implementation of label-based interfaces for the mandatory

portions of the Bell and LaPadula secrecy model and the Biba integrity model have been

developed. Implementation of portions of this design has demonstrated the feasibility of

this approach to label-based interfaces. This design has potential for widespread use in

computer security education, as well as broad application as a component in the ongoing

Department of Defense research of trusted computer system interfaces.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. COMPUTER SECURITY AND THE OPERATING SYSTEM 1

B. OVERVIEW OF ACCESS CONTROL POLICIES 2

C. HISTORICAL BACKGROUND ON MAC SYSTEMS 4

D. ASSURANCE VERSUS POLICY 5

E. SECRECY AND INTEGRITY POLICIES AND MODELS 6

F. TRUSTED SUBJECTS VERSUS PRIVILEGED SUBJECTS 8

G. ADVANCING COMPUTER SECURITY 9

H. MAC SYSTEMS AT EDUCATIONAL INSTITUTIONS 10

I. SOLUTION REQUIREMENTS 11
1. Relatively Inexpensive 11
2. Runs on PC hardware 11
3. Dual-Boots with Other Operating Systems 11
4. Easy to Use 12
5. Supports Secrecy and Integrity Policies 12
6. Supports the Setting of a Session Level 12

J. PROBLEMS WITH EXISTING PRODUCTS 13
1. Microsoft Windows NT 13
2. Deep Purple 13
3. Sun Microsystems Trusted Solaris 14
4. Rule Set Based Access Control in Linux 14
5. Other Commercial Products Supporting MAC Policies 15
6. System Summary 16

K. PROPOSED SOLUTION 18

II. LINUX MANDATORY ACCESS CONTROL DESIGN 21

A. NEW DATABASES 21
1. Policy Label 21
2. Human-Readable Label (HRL) Databases 23
3. User Clearance Database 25
4. Range Database26

vn

B. NEW MODULES 26
1. Policy Modules 27
2. Meta-Policy Manager 27
3. Label Modules • 27
4. Label Manager 28
5. Range Modules 28
6. Range Manager 28
7. Clearance Modules 28
8. Clearance Manager 29

C. LAYERING DESIGN 29
1. Clearance Manager Dependencies 30
2. Meta-Policy Manager Dependencies 31
3. Range Manager Dependencies 32
4. Label Manager Dependencies 33
5. Clearance Layer Dependencies 34
6. Range Layer Dependencies 35
7. Label Layer Dependencies 36

III. LINUX MODIFICATIONS 39

A. OPERATING SYSTEM MODIFICATIONS 39
1. Basic Policy Enforcement 39
2. Inode Changes 39
3. File Statistics 42
4. Subject Changes 42
5. Creating Objects 43
6. Deleting Objects 44
7. Deflection Directories 45
8. Updating Object Properties 46
9. The Super User 47
10. Setting Initial Policy Labels 48
11. Summary of Changes 49

B. APPLICATION MODIFICATIONS 49
1. File System Creation Program (mke2fs) 49
2. Login Program (login) 50
3. Object Statistics (Is, stat) 50
4. Process Status (ps) 51
5. Process Identification (id) 51
6. Directory Creation (rnkdir) 51

IV. CONCLUSIONS..... 53

A. PROGRESS MADE 53

B. PROBLEMS ENCOUNTERED 53

viii

C. FUTURE RESEARCH 54
1. Additional User Roles 54

. 2. Auditing 55
3. Setuid and Setgid Programs 56
4. Deflection Directories 56
5. Administrative Interface 56
6. Privileges 57
7. Trusted Path 57
8. Policy Label Initialization 58
9. Move or Port to the Newest Linux Kernel 58

APPENDIX A. DESIGN DECISIONS RELATED TO COVERT CHANNELS 61

A. DEFLECTION DIRECTORIES 61

B. OBJECT PROPERTIES 62

APPENDIX B. DATABASE DESIGN 63

A. POLICY LABEL 63

B. LABEL DATABASE 64

C. USER CLEARANCE DATABASE 65

D. RANGE DATABASE 66

APPENDIX C. MODULE DESIGN 67

A. POLICY ENHANCED LINUX COMMON TYPES MODULE (PEL_TYP) 67

B. BELL AND LAPADULA POLICY MODULE (BLP_POL) 67
1. BlpPolInitLabel 68
2. BlpPolSetLevel., 69
3. BlpPolGetLevel 70
4. BlpPolAddCategory 71
5. BlpPolDelCategory 73
6. BlpPolTestCategory 74
7. BlpPolDominates 75
8. BlpPolRead 77
9. BlpPolWrite 79

C. BIBA POLICY MODULE (BIB_POL) 81
1. BibPolInitLabel 82'
2. BibPolSetLevel 82
3. BibPolGetLevel 83
4. BibPolAddCategory 85
5. BibPolDelCategory 86

ix

6. BibPolTestCategory 87
7. BibPolDominates : 89
8. BibPolRead 91
9. BibPolWrite 92

D. BELL AND LAPADULA LABEL MODULE (BLP_LBL) 94
1. BlpLbllnit 96
2. BlpLblBinToStr ■• 98
3. BlpLblStrToBin 100

E. BIBA LABEL MODULE (BIB_LBL) 102
1. BibLbllnit 103
2. BibLblBinToStr 106
3. BibLblStrToBin 108

F. BELL AND LAPADULA RANGE MODULE (BLP_RNG).. 109
1. BlpRnglnit. 110
2. BlpRngSysLow 112
3. BlpRngSysHigh 113

G. BIBA RANGE MODULE (BIB_RNG) 114
1. BibRnglnit 115
2. BibRngSysLow 117
3. BibRngSysHigh 117

H. BELL AND LAPADULA CLEARANCE MODULE (BLP_CLR) 118
1. BlpClrGetClearance 119

I. BIBA CLEARANCE MODULE (BIB_CLR) 122
1. BibClrGetClearance 123

J. LABEL MANAGER (LBL_MGR) 126
1. LblMgrlnitLabel 127
2. LblMgrlsValid 128
3. LblMgrBinToStr 129
4. LblMgrStrToBin 131
5. LblMgrGetBlp 134
6. LblMgrGetBiba 135
7. LblMgrSetBlp 136
8. LblMgrSetBiba 137

K. CLEARANCE MANAGER (CLR_MGR) 138
1. ClrMgrGetClearance 139

L. RANGE MANAGER (RNG_MGR) 141
1. RngMgrGetRange.... 141

M. META-POLICY MANAGER (POL_MGR) 143

x

1. PolMgrDominates 143
2. PolMgrRead 145
3. PolMgrWrite 146

APPENDIX D. SOURCE CODE 149

A. POLICY ENHANCED LINUX COMMON TYPES (PELJTYP) 149
1. Peltyp.h 149

B. BELL AND LAPADULA POLICY (BLP_POL) 150
1. blppol.h 150
2. blppol_getset.c 151
3. blppol_access.c 156

C. LABEL MANAGER (LBL_MGR) 159
1. lblmgr.h 159
2. lblmgr_getset.c 160

D. META-POLICY MANAGER (POL_MGR) 164
1. polmgr.h 164
2. polmgr.c 165

LIST OF REFERENCES 169

INITIAL DISTRIBUTION LIST 173

XI

XU

ACKNOWLEDGEMENT

The author would like to acknowledge the financial support of the National

Security Agency, Code R2, for allowing the purchase of the software and reference

material used in this thesis. The work was performed under Contract H98230-R2-98-

8004.

The author would also like to thank Prof. Irvine for the opportunity to work on

this thesis topic, as well as her guidance, support and encouragement.

Last, but not least, my wife and family deserves the most gratitude of all for their

support and patience during the performance of this investigation. Without their support,

none of this would have been possible.

xin

XIV

I. INTRODUCTION

A. COMPUTER SECURITY AND THE OPERATING SYSTEM

Computer systems have grown from the huge and costly mainframe environments

of yesterday to the powerful distributed environments of today; from one large machine

to a plethora of Personal Computers (PCs); from the relatively slow and featureless to the

fast and user-friendly. Great strides in technology have taken place in a very short time,

but despite these great advancements, computer security continues to be a major problem,

as recognized at the highest levels of the United States Government [Refs. 1,2].

In the early days of the mainframe computer, physical security was king; the

system was housed in a large room behind locked doors where only authorized personnel

were allowed access. One program ran at a time, submitted in batch mode in the form of

punch cards, through a check-in procedure outside the computer room. The technicians

in the room were given special trust to handle the cards and any resulting output with

care, being discreet about any information they contained. The output and the original

punch cards were returned to the submitting user through a checkout procedure outside

the computer room. The submitter was required to keep the cards in a safe place and in

their proper sequence. Most people never saw the expensive "monster" of a machine

behind the white walls. This was arguably the best computer security the industry has

ever achieved, but this accomplishment was not achieved through technology - it was

achieved by implementing standard operating procedures as well as temporal and

physical controls.

Computers now store programs on connected devices, each with many gigabytes

of information. They run them "simultaneously," serving and being served by other

computers connected in a vast network. If the network really is the computer, then the

world is our computer room, giving everyone access to the power within its walls.

Operating procedures and trusted computer technicians can no longer protect us from

malicious programs and users, so we must now rely on the computer system to protect us

1

from each other. More correctly stated, the operating systems and network protocols are

the only means of protection when computer systems are connected in a highly

distributed fashion with a large number of users. This also applies to a closed network

within an organization, where no access to the Internet is provided. Unfortunately,

security is a secondary or tertiary concern to performance and functionality, and is often

not even considered during the design process.

The first line of defense in today's computing environments is the operating

system. This is the place where programs acting on behalf of users make requests for

resources, such as files; this is where access to resources must be controlled. When a

user requests a resource on the local system, the operating system should be able to

determine whether the request should be granted or not, based on some kind of policy

with respect to the user in question and the resource being requested. When a user

requests a resource across a network, the operating system should be able to use network

protocols to query the remote system whether the request should be granted or not.

B. OVERVIEW OF ACCESS CONTROL POLICIES

An information access control policy is a high-level description of how people

can access information. An example is the government policy relating to sensitive

information: one cannot access information that is classified higher than one's clearance.

In other words, if a user is cleared to see information up to a SECRET level, then that

person cannot see information classified at a TOP SECRET level. Another example is a

policy that states employees in the accounting department cannot see files created by the

engineering department, and vice versa. The operating system is the place where policies

such as these are implemented and enforced.

When mapped to computers, policies are typically stated in terms of how

"subjects" can access "objects." A subject can be thought of as the active entity in the

system acting on behalf of a user, such as a process, task or thread. An object is a passive

entity in the system, such as a file or directory.

Given any kind of policy, the elements of the policy can be factored into their

basic properties, which in turn can be grouped into one of three categories: a

Discretionary Access Control (DAC) policy, a Mandatory Access Control (MAC) policy,

or a Supporting Policy. [Ref. 3, p. 55] A Supporting Policy is one that is used to support

the proper enforcement of a DAC or MAC policy.

A DAC policy is one where an object (e.g., file or directory) has a named user, or

set of users, who can decide, at their discretion, who can have access to the object [Ref. 4,

p. 290]. This can be implemented in many different ways, with varying degrees of

granularity. Many modern implementations include something known as an Access

Control List (ACL), a feature that is available in Windows NT and some versions of

Unix.

A MAC policy, on the other hand, implies that the owner of an object does not

have control over who has access to it [Ref. 4, p. 290]. A good example is a file with a

SECRET classification; the owner of the document does not have the discretion to

control who has access to it because the policy states that a person must have the

necessary clearance to view it. Systems that employ a MAC policy will often support a

DAC policy as well, providing the ability to control access to objects within the same

data classification. Putting a DAC policy "on top of a MAC policy does not provide a

significant increase in security, but it does provide end-users with the functionality they

desire, and it may satisfy some set of functional security requirements, introduced in the

next section.

Systems that enforce a DAC policy are easily obtained on the market, but it is

much harder to find systems that enforce a MAC policy. The reasons for this disparity

are not easily described, and tend to evoke strong disagreement between various camps of

the government, research, and commercial sectors. The fact remains that there are few

MAC systems, and they tend to be orders of magnitude more expensive than non-MAC

systems.

C. HISTORICAL BACKGROUND ON MAC SYSTEMS

Systems that can withstand active and passive attacks from hostile users and

outsiders have been research topics for decades. The Department of Defense (DoD) has

been directly involved from the beginning, sponsoring numerous research projects. In

fact, the 16 seminal papers on computer security were either sponsored by a DoD agency

or written by an employee of the DoD [Ref. 5]. The DoD has also issued directives

detailing minimum computer security requirements [Ref. 6].

The result of some of this activity was the establishment of the DoD Computer

Security Center and the publication of the Trusted Computer System Evaluation Criteria

(TCSEC) in 1983, commonly referred to as the "Orange Book" [Ref. 7], which was

revised and republished in 1985. The Orange Book described the minimum requirements

for various levels of assurance, and supported the evaluation of products that claimed to

meet a level of assurance. The Orange Book was developed with the following three

goals in mind:

.. .(a) to provide guidance to manufacturers as to what to build into their
new, widely-available trusted commercial products in order to satisfy trust
requirements for sensitive applications and as a standard for DoD
evaluation thereof; (b) to provide users with a yardstick with which to
assess the degree of trust that can be placed in computer systems for the
secure processing of classified or other sensitive information; and (c) to
provide a basis for specifying security requirements in acquisition
specifications. [Ref. 7, p. v]

The Orange Book specifies four divisions of security assurance and functionality,

ranging from the high end at division A to the low end at division D. Divisions B and C

are broken down further, giving the following seven classes (from lowest to highest):

D, Cl, C2, Bl, B2, B3, and Al. Class Cl and C2 have DAC requirements, while the

higher classes have both DAC and MAC requirements (among other requirements).

Before the Orange Book was published, there was some research and

development being conducted in the area of MAC systems, but it was not until after its

publication that commercial companies became interested in meeting the stated needs and

requirements of the DoD, as put forth in the Orange Book. Unfortunately, such ventures

generally did not experience financial success over the next five to ten years, leaving

some companies with the impression that MAC systems are not marketable. On the other

hand, the impression left with the users was that MAC systems are expensive and

unusable.

D. ASSURANCE VERSUS POLICY

A computer system can have security problems due to one or more of the

following reasons:

• The enforced policy is flawed and it will never work.

• The policy was poorly implemented, either unintentionally (by a poor design)

or maliciously (through poor configuration management).

• The final product is not configured and administered in a secure manner.

The quality of "assurance" relates to the first and second bullets listed above: 1)

the measure of confidence that can be placed in the policy; and 2) the measure of

confidence that can be placed in a computer that it correctly enforces its implemented

policies. It is often wrongly assumed that if a computer implements a MAC policy, then

it must be a very secure computer. In reality, the number of enforced policies and their

restrictive properties has nothing to do with the measure of assurance. One can choose

the most respected and strict policies ever conceived but implement them so poorly that

the resulting system is very insecure and therefore has very low assurance. On the other

hand, one can choose a flawed policy and implement it without any bugs and end up with

a system that is of high assurance, because it implemented its policy well, even though

the policy was not especially secure.

With respect to the expense of past and current MAC systems, the expense is a

function of the level of assurance being engineered into the design and implementation,

required by the security evaluation criteria, as well as the time and expense of the

evaluation process. Often, assurance and MAC are incorrectly used as synonyms. This

incorrect relationship may have started when the TCSEC increased functionality at each

evaluation class as it increased assurance.

E. SECRECY AND INTEGRITY POLICIES AND MODELS

There are many MAC policies, but the two most common policies are some form

of secrecy and/or integrity policies. A secrecy policy was described earlier, and is used

by governments to classify documents and clear people; documents receive a

classification such as SECRET, while a person receives a clearance such as TOP

SECRET, allowing such a person to read anything that is classified from TOP SECRET

and below. A secrecy policy is concerned with the controlled disclosure of information.

An integrity policy is very similar to a secrecy policy but is concerned with the

controlled modification of information. As with secrecy, documents are given a

classification, and people are given clearances. The kind of labels given to users and

documents could be USER and ADMIN. A user with ADMIN integrity clearance can

modify any document with the USER or ADMIN classification. A user with USER

clearance can modify documents with the USER classification, but not with the ADMIN

classification.

A security model is a simple, abstract, precise and unambiguous representation of

a security policy [Ref. 3, p. 130]. Modeling a policy before it is implemented is one way

of increasing the assurance of the implementation. For high assurance systems, the

model is typically expressed in mathematical terms, allowing it to be subjected to

mathematical proofs to expose any inconsistencies in the policy before it is implemented.

6

The two models often used as a basis for new secrecy and integrity models are the Bell

and LaPadula model1 and the Biba model, respectively [Ref. 4, p. 278].

The Bell and LaPadula (BLP) model has many properties2 and functions seldom

used in practice, such as its DAC functions [Ref. 3, p. 153]. However, the following

parts are often used by systems that claim to support BLP:

■ Simple Security Property

This is often referred to as the "read down" or "no read up" rule. It describes

the basics of the secrecy policy. [Ref. 8, p. 16]

■ Confinement Property or *-Property (pronounced "star-property")

This is a property introduced to prevent accidental or malicious downgrading

of information. It is often referred to as the "write up" or "no write down"

rule. [Ref. 8, p. 17-18] [Ref. 9, pp. 245-247]

■ Compatibility Property

This property prevents the introduction of "dangling" objects by restricting the

creation of objects in a hierarchy such that the secrecy level of the parent node

(e.g., a directory) must be lower than or equal to the level of the child node.

[Ref. 8, p. 29]

■ Trusted Subjects

In practice, there must be some way to write information to lower levels under

controlled situations. For example, as documents are declassified, how is a

document read at a higher level and written to a lower level? To resolve this

and other practical problems, a "trusted subject" is introduced. [Ref. 8, pp. 18,

64-67][Ref.3,p. 153]

1 Though it is often referred to as THE Bell and LaPadula model, the two authors actually published four
distinct, yet related, models referred to as Volume I, Volume II, Volume III, and the Multics Interpretation.

2 Historically, there is an inconsistent use of the terms "model", "policy", and "properties". Bell and
LaPadula actually restated the DoD security policy into what can be referred to as the Bell and LaPadula
secrecy policy, consisting of additional security properties. The Bell and LaPadula model expressed the
stated properties mathematically. However, the "Bell and LaPadula model" is often used synonymously
with the "Bell and LaPadula policy."

A trusted subject is allowed to read and write across a range of secrecy levels.

Such a subject is still constrained by the simple security property because it is

not able to read any higher than the upper end of its range. A trusted subject

can write to objects within its range, but is unable to write lower than the

lower end of its range, because of the confinement property.

For example, if a TOP SECRET file needs to be downgraded to SECRET,

then a trusted subject with a range of SERCRET to TOP SECRET is created.

This range allows the subject to read the TOP SECRET file and write it to a

SECRET file, but prevents it from writing the file to the UNCLASSIFIED

level.

A system should have a very limited number of trusted subjects performing

very specific tasks, because they have the obvious potential of creating a hole

in a system's security. Such subjects should be subjected to extra scrutiny to

avoid the insertion of malicious code.

The Biba model has the same properties as the BLP model, but with the following

differences:

■ Simple Security Property

This is often referred to as the "write down" or "no write up" rule.

■ Confinement Property or *-Property

This is a property introduced to prevent the accidental or malicious corruption

of data from low-integrity sources. It is often referred to as the "read up" or

"no read down" rule.

F. TRUSTED SUBJECTS VERSUS PRIVILEGED SUBJECTS

There is a big difference between Trusted Subjects and Privileged Subjects.

Trusted Subjects are part of the BLP and Biba models, and are still constrained by the

simple security and confinement properties. On the other hand, privileged subjects are

those that are able to bypass security altogether. In either case, such subjects must be

carefully introduced into a system because they have the potential of opening

considerable security weaknesses. This may include the physical inspection of

programming code, stringent configuration management procedures, or other means of

providing some level of assurance that the subjects are not malicious.

G. ADVANCING COMPUTER SECURITY

It is vital to our country's political and economic future to adequately protect

corporate and government information from unauthorized disclosure and modification.

Unfortunately, the current state of computer security is weak, especially when novice

adversaries can perform successful infiltrations of sensitive systems. Systems that

enforce Mandatory Access Control (MAC) policies are known to reduce some of the

security weaknesses, but such systems have seen limited use within the United States

Government, and they have seen little or no use in the private sector. Some of this

limited use is caused by a lack of exposure to systems able to enforce MAC policies, and

the expense of current systems that do enforce a MAC policy.

Lack of exposure can be resolved through better education. There are probably

many computer professionals who have never even heard of Mandatory Access Control.

This is evidenced in the fact that few universities even offer an introductory course in

computer security [Ref. 10], and in the cry for more education in the area of computer

security in the Presidential Commission on Critical Infrastructure Protection (PCCIP)

[Ref. 1, pp. 70-71]. Unlike most areas in the field of Computer Science, security runs

across many disciplines. For example, databases and operating systems need security.

More professors with expertise in these fields need to incorporate security into their

courses. As students graduate from such programs and move into the work force they are

more likely to consider product security requirements if they have some educational

background in the area.

Lack of exposure could also be resolved if the cost of MAC systems was not so

prohibitive. Ideally, every educational institution needing a MAC system to support their

educational objectives could easily afford one, and every company that wanted to buy a

MAC system could find one at the same price as a similar non-MAC system. In other

words, the ideal situation would remove cost as a deciding factor.

H. MAC SYSTEMS AT EDUCATIONAL INSTITUTIONS

The Computer Security Track of the Computer Science Department of the Naval

Postgraduate School (NPS) teaches a class called Introduction to Computer Security,

among other computer security courses. This class is supported with a series of nine

laboratory exercises, or tutorials, to enforce what the student is learning in class. Three

of these tutorials are related to MAC policies. These three tutorials are critical in helping

students fully understand these concepts.

The MAC tutorials are based on systems that are expensive to buy and maintain.

This limits the track's ability to support the tutorials at distance learning sites, and

prohibits other institutions from benefiting from our successes in this area because they

are unable to buy the specialized hardware and/or software. Affordable MAC systems

are absolutely necessary to provide the exposure and understanding of MAC systems

within educational institutions.

On the other hand, lab space tends to be a premium commodity at educational

institutions, so even if MAC systems were given away, they may not have any room for

them. Therefore, everyone would benefit from a MAC system that does not require

special hardware, and can run on computers that are commonly found in university

computer labs. This is the case at NPS, where the Computer Security Lab desperately

needs more space, but where the track must continue to maintain the specialized

hardware and software.

10

I. SOLUTION REQUIREMENTS

This thesis researched the options for supporting an inexpensive Mandatory

Access Control system. The requirements for such a system are given in the following

subsections, along with a justification for each requirement.

1. Relatively Inexpensive

As expressed in previous sections the current high costs of MAC systems is a

barrier to greater exposure, acceptance, and demand. MAC systems can help solve some

of the security problems that currently plague DoD and non-DoD organizations. Some

commands within the DoD recognize the need for MAC systems, but cost is not

necessarily the obstacle. Conversely, the private sector does not currently recognize the

need for MAC systems and therefore cannot justify their expense. Lowering the cost of

MAC systems will increase their exposure, which will then increase their acceptance,

which will cause consumers to demand such functionality from leading operating system

vendors.

2. Runs on PC hardware

Requiring a MAC system to run on a PC may be viewed as a refinement of the

previous requirement, though the previous requirement is directed at the cost of software;

this requirement is directed at the cost of the hardware. By requiring the software to run

on a PC, this eliminates the need for expensive and/or specialized hardware.

3. Dual-Boots with Other Operating Systems

This requirement is also cost-related. If, when a computer is booted, the user can

choose between some number of operating systems to boot, the computer can have

multiple uses. If the MAC system can be installed in a multi-boot configuration, then

additional hardware and/or counter space is potentially not required to install and use it.

II

4. Easy to Use

As explained earlier, one of the complaints against MAC systems is their un-

usability. This has two perspectives: user and administrator. Both perspectives are

equally important to address properly. Users cannot be expected to learn many new

commands or other interfaces, so the MAC system interface must be fairly intuitive for

new users. The administrative interfaces must be well documented with good security

defaults, in case the documentation is not referred to. If an administrator is confused or

frustrated with the system, then it will not be recommended for use.

5. Supports Secrecy and Integrity Policies

All current MAC systems support a secrecy policy because this policy is easily

understood, both intellectually and in its application to an organization. Integrity, on the

other hand, is not as easy to understand or apply, which may seem contrary to the

previous requirement. From an educational point of view, however, a system supporting

integrity is of great value, because it gives students hands-on experience with a somewhat

difficult topic.

6. Supports the Setting of a Session Level

There are two basic types of user interfaces provided by MAC systems: 1) those

that allow a user to read and write to any file as long as it falls within the user's

clearance; and 2) those that require the user to specify the level at which reading and

writing will be allowed. The setting of a level as described in the latter interface is

known as setting a session level. Experience in the NPS Computer Security Lab has

shown that the former interface is somewhat confusing to new users.

12

J. PROBLEMS WITH EXISTING PRODUCTS

This section lists systems that currently support at least one MAC policy, and

describes why they do not meet the requirements set forth in the last section.

1. Microsoft Windows NT

Microsoft Windows NT server (version 4.0) costs about $670 with 5 client

licenses, while NT workstation costs about $270 per license (without volume or other

discounts). NT runs on PC hardware and can dual boot with many other operating

systems, as long as it can read and write to the C partition. The user interface is very

familiar to computer users because of its widespread use. However, effective

administration of NT can be difficult to learn. NT supports a robust DAC policy, but it

does not support a MAC policy.

2. Deep Purple

Deep Purple is the name of a product being sold by Argus Systems Group, Inc. It

is a modified version of Microsoft Windows NT such that it supports a MAC secrecy

policy, but no integrity policy. Argus Systems licensed the technology from the Defense

Evaluation and Research Agency (DERA), an agency within the United Kingdom

Ministry of Defense. DERA had performed a study, called Purple Penelope, that looked

into the feasibility of modifying NT to support a MAC policy. Argus Systems took

DERA's results and made the necessary modifications to make it commercially

acceptable.

Deep Purple is an NT add-on product, meaning it is installed after NT and other

user applications are installed. In addition to the cost of buying NT, a Deep Purple server

license is $795, while a Deep Purple workstation license is $395. There are some

additional administrative tasks, but it comes with good documentation. It does not

support a session level.

13

3. Sun Microsystems Trusted Solaris

Sun Microsystems has a MAC-based version of its Solaris, Unix-based operating

system called Trusted Solaris, supported since 1994. The NPS Computer Security Lab

has been using version 1.1 of Trusted Solaris since 1995. The current version of Trusted

Solaris is 2.5, with a list price of $895 per workstation license, and $4,995 per server

license, before any academic discounts.

Trusted Solaris requires the Sun SPARC hardware, unlike the non-MAC Solaris

operating system, which can also run on a PC. In addition, it only supports a secrecy

policy. The user interface to Trusted Solaris is almost identical to the non-MAC version,

and is easy for Unix users to adapt to. Administration of the system is more difficult for

Unix administrators to adapt to, but the documentation is good. It does not support a

session level.

4. Rule Set Based Access Control in Linux

Rule Set Based Access Control (RSBAC) runs on Linux, a variant of the Unix

Operating System. Linux has been developed by many volunteers around the world and

can be downloaded from many different sites at no charge, or purchased in an integrated

package from various vendors at a very modest price, ranging from $50 to $150. This

price is a one-time cost for an unlimited-use license. The source code is also freely

available for users to examine and modify with a few restrictions aimed at making sure

the resulting modifications are also freely available. As with most other variations of

Unix, Linux only supports a DAC policy.

A German graduate student modified Linux as part of his thesis work to support a

variety of MAC policies, which he dubbed "Rule Set Based Access Control" (RSBAC)

[Ref. 11]. He provides the source code for his changes, and updates the code as he adds

more functionality, and as new versions of Linux become available. Because of its Linux

14

roots, it can dual-boot with other operating systems and runs on a wide range of

platforms, including the PC. It does not support a session level.

From a Linux user's point of view, there is little difference between RSBAC and

Linux. However, from an administrator's point of view, it is frustrating to install and

configure due to the poor documentation, which is nearly non-existent. The robustness of

the implementation is also questionable. While conducting tests, an installation was

quickly and unintentionally corrupted beyond repair.

5. Other Commercial Products Supporting MAC Policies

The only other commercially available operating system products that support a

MAC policy are the XTS-300 from Wang Federal, Inc., and the ACF2 MVS with ACF2

MAC from Computer Associates International. All other Operating Systems supporting a

MAC policy were produced prior to 1996, making their availability somewhat

questionable.

Even though the XTS-300 runs on a PC, the initial purchase of an XTS-300 can

be an order of magnitude greater than an ordinary PC. It is also questionable whether it

can dual-boot with other operating systems. The cost of annual hardware and software

maintenance for two XTS-300's exceeds that of six PC's. The product from Computer

Associates (CA) runs on the J and 9000T models of the IBM ES/3090 series hardware.

This is a mainframe product, the price of which would be prohibitive for academic users.

The XTS-300 supports both secrecy and an integrity policy, while the CA product

only supports a secrecy policy. The documentation for the XTS-300 is extensive, while

the quality of the CA documentation is unknown. The XTS-300 supports a session level.

15

6. System Summary

Table 1 provides a summary of the products described in this section and how

they relate to the requirements set forth in the previous section. Because cost is such a

relative measurement, actual costs are supplied in the table instead of a "yes" or "no"

response.

16

es
si

on

L
ev

el

o
Z

o
Z

o
Z

o
Z

co
<L>

co

>-
C/2 \

>» 1 .tz >> i

te
gr

ol

ic

o o o o co
1)

><
o

Z Z Z Z Z
Ö OH j

i

ö o o
Z

co co co co co
VH a 1 u 4> u <D (U

C/3 *^

^ > >H >< >«

o
I>» CO !

co co co
<L> o ' O e>> CO I—. 1 >« >« >< z Z

W

CO O i
5 ° !
Q OQ |

co
<L>

><

co

><
o
Z

co

><
o
Z

o. z

o
2 U i

co co
0> o co

4>
co o

g&H >< > 2 t* >- z
Ä |

I o m m O o €>e
h f c^ VO ON &9 o Vi <u s VO "* OS © Vi

*-> > j
CO i- €Ä r—i •* m se
o a> 60 V5 <N
O ^ i 60

P i
fc- t
co 1

So
ft

w

ie
nt

 O m in O O &>
t^ *o Os se © &>
<N VO oo o se
fc<* €><* «e m

U | ©9

1 co

Pr
od

uc
t H

Z
co

O

c

&
3

Di
a
Si

jg
"o
t/3

co
<
CQ

O
o

i
C/3

>

PL,

i £ <L> 3 00 H u 1 Q 1 H & X <

Table 1. Product-to-Requirements Summary

1 The cost of NT is included.
2 The cost is taken from a quote provided in 1997.

17

K. PROPOSED SOLUTION

There is no product that meets the stated requirements, as shown in Table 1.

Building an operating system from scratch to meet the requirements would be an

enormous undertaking, beyond the abilities of most people (and companies) to produce.

The proposed solution is to modify an existing operating system. This is the path of least

resistance, and the one most likely to succeed in a short amount of time. The Linux

operating system is the best choice because it meets all the requirements except those

related to MAC, although some would argue that it is not user friendly.

The remainder of this thesis describes modifications made to the Linux operating

system to support additional access control policies. This effort started as an attempt to

support secrecy and integrity policies, but it soon became obvious that a flexible design

would allow any new policy to be easily added to Linux. In this thesis, the final design is

referred to as "Policy-Enhanced Linux".

This effort does not attempt to provide a high-assurance product. As explained

earlier, there is no connection between MAC policies and assurance. Policy-Enhanced

Linux is meant to be used for educational purposes only, and should not be used to

support "live" environments, whether within the DoD or without.

The remainder of this thesis is organized as follows:

■ Chapter II gives a high-level design of the new databases and modules needed

to support additional policies in Linux.

■ Chapter III gives a high-level description of the changes required in the

existing Linux source code to support new policies.

■ Chapter IV provides a summary of the thesis work, including implementation

progress, problems encountered, and suggested future research topics.

■ Appendix A provides justification for some of the design choices.

■ Appendix B provides detailed design specifications for new configuration

databases.

18

Appendix C provides detailed code specifications for new modules.

Appendix D provides a listing of the implemented source code.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

II. LINUX MANDATORY ACCESS CONTROL DESIGN

This chapter describes the design of the new policy interface with the goal of

providing a design that is independent of the operating system used to implement it.

Chapter III continues by providing a design that incorporates these ideas into a Linux

distribution. The designs presented in this chapter are intended to provide a somewhat

generic interface to allow different policies to be "plugged into" an installation of Policy

Enhanced Linux, thus making a change in policy relatively easy to achieve.

A. NEW DATABASES

This section describes the new databases that must be added to Linux to support a

new policy. In this context the term "database" refers to a passive object holding

information.

Each new database has a field to track its version. This provides a mechanism for

a module that manages a database to be able to identify older versions of a database

during run-time, and to act accordingly.

All the databases, with the exception of the Policy Label, will be stored in

separate text files. This approach follows the standard Unix practice of having human-

readable configuration files that can be modified using a text editor. It also has the added

benefit of not requiring special administrative commands to be implemented. Such

interfaces can be added later as a convenience for the System Administrator, but are not

necessary for an initial implementation.

■1. Policy Label

To support any kind of MAC policy, there must be a way of "attaching" some

kind of label that describes the mandatory permission properties of the subject or object it

is associated with. In a secrecy policy, for example, there must be a way to associate

21

labels such as "Secret" and "Top Secret" with files. An efficient way to implement such

a label is with a set of bits, instead of a character string like "Top Secret". The Policy

Label is a set of bits that becomes an immutable1 property of each subject and object. By

comparing the label of the subject with the label of the object, the system can easily

determine whether the desired access should be allowed or not. The label also has a

version number.

To create a flexible policy environment, the Policy Label is viewed as a container

for several labels. In this initial design, the Policy Label will contain a secrecy label

component and integrity label component, as shown in Figure 1.

SECRECY
LABEL

INTEGRITY
LABEL

UNUSED

Policy Label

Figure 1. High-Level View of the Policy Label

Figure 1 shows a Policy Label with the labels of two enforced policies: secrecy

and integrity. To add another enforced policy, the first step is to reserve some piece of

the unused portion of the Policy Label for its use. Note that the label is not called an

"Access Class" or "Access Label" due to the fact that the implementation is so generic

that the label could be used to enforce a policy that is not related to access control, e.g.,

an Audit Policy.

1 Immutability is certainly the desired property for labels, but no extra effort is expended in this design,
above and beyond what Linux already provides, to guarantee that a policy label cannot be modified.

22

2. Human-Readable Label (HRL) Databases

Text-based labels are not actually associated with subjects and objects, rather, the

Policy Label is a string of bits that represents a label that humans find easier to read and

understand. For example, a simplistic implementation would associate the number zero

with a human-readable label of "Unclassified" and a number three with a label of "Top

Secret." There must therefore be a way of mapping the binary internal representations of

a label to its human-readable form, and vice versa. The Human-Readable Label

Databases help to satisfy this requirement, as shown in Figure 2.

Bits in a Policv Label Human-Readable Label

0 0 UNCLASSIFIED

0 1 CONFIDENTIAL

1 0 SECRET

1 1 TOP SECRET

Figure 2. Mapping Bits to Human-Readable Military Policy Labels

In order to support the addition of policies to the system, there is a separate

human-readable label database for each enforced policy. Because the initial

implementation will support the Bell and LaPadula secrecy policy and the Biba integrity

policy, two Human-Readable Label Databases are required, as graphically shown in

Figure 3.

23

Binary Policy Label

11000010000
(SECRECY)

10100000001
(INTEGRITY)

00000000000000000000
(UNUSED)

\7
SECRECY

TRANSLATION
FUNCTION

SECRECY
HUMAN-READABLE

DATABASE

'TOP SECRETr

INTEGRITY
TRANSLATION

FUNCTION

z\
INTEGRITY

HUMAN-READABLE
DATABASE

'ADMINISTRATOR"

Human-Readable Policy Label

Figure 3. Binary to Human-Readable Label Translation

When a new policy is added to the system, an associated human-readable label

database and translation function must be added. This is an important feature because it

allows the addition of new policies while minimizing the changes to existing code.

24

Each database consists of two sections, as described below:

• A version number.

• A mapping of the possible bit values to human-readable form. The actual

format of this section is policy-dependent and cannot be specified in advance.

3. User Clearance Database

To support a mandatory policy, there must be a way of associating a clearance

with each user. For example, user A may have a clearance to only read objects that are

less than or equal to the "Secret" classification, while user B may read any object up to

"Top Secret". These settings need to be stored in a database separate from the usual Unix

user attribute file (/etc/passwd) for compatibility purposes. This database is known as the

Clearance Database.

Once again, in order to provide for flexibility, there is a separate database for each

enforced policy. This database must hold the following information for each authorized

user of the system:

• Version Number

• Minimum Session Level

This is the lowest level that a user can set for a session level. A user can still

read data that this level dominates but this level becomes the lowest level

where files can be created or modified by the user.

• Clearance

This is the highest level that a user can set for a session level. This becomes

the highest level that a user can read or write files.

• Default Session Level

This is the session level that is set for the user if none is specified at login

time, or for pseudo-users that are used for various system daemons that are

started automatically by the system.

25

The following must be true:

Minimum Session Level < Default Session Level < Clearance

4. Range Database

To be able to bound the level of the data being produced and the level of the

subjects being executed (despite what the user clearances are), there exists a database

known as the "Range Database." This database allows a System Administrator to

constrain the range at which a system will operate. For example, assume a user has a

clearance ranging from UNCLASS to TOP SECRET on a system that is intended to only

store information from CONFIDENTIAL to SECRET. The Range Database is used to

set the range of data that can be created on a system. This range can change over the

lifetime of a system so that there can exist objects on a system that are outside of the

currently set range. There exists one database for each enforced policy, storing three

pieces of information:

• The Version Number

• The system high label for the associated policy

• The system low label for the associated policy

The Following must be true:

System low label < System high label

B. NEW MODULES

This section describes the new modules to be added to Linux to support flexible

policies. In this context, the term "module" refers to an active part of the system that

manages a particular database or flow of control.

26

1. Policy Modules

For each enforced policy there must exist a module which enforces the policy.

These modules provide an interface, as described below, with respect to the individual

policy:

■ Determine whether one label dominates another.

■ Determine whether a read or write access (or read/write access) should be

allowed based on the subject and object labels involved.

■ Change or query attributes of a label.

■ Publish properties of the policy that are needed by other modules, e.g., the

number of secrecy levels supported by the secrecy policy implementation.

2. Meta-Policy Manager

The Meta-Policy Manager is a replaceable module that is responsible for calling

the individual policy modules and returning the net result of the query. It is called the

"Meta-Policy Manager" because it implements a policy on policies, deciding which

policy modules are called first and whether some combination of results can result in an

approved or declined access. It is expected that in the majority of cases, if not all cases, a

positive response must be returned from all enforced policies in order to obtain the

desired access. However, there is enough flexibility that some unforeseen set of policies

could in fact support a situation where a negative result from one of the enforced polices

could be over-ridden by a positive result from some other set of policies.

3. Label Modules

For each supported policy there exists a module that manages its associated Label

Database. It provides an interface as described below:

• Map a human-readable label for the policy to a binary label for the policy.

• Map a binary label for the policy to a human-readable label for the policy.

27

4. Label Manager

The Label Manager is a replaceable module that defines the Policy Label, and is

responsible for calling the individual Label modules to provide an interface as described

below:

• Map a human-readable label for the system to a Policy Label for the system.

• Map a binary Policy Label for the system to a human-readable label for the

system.

• Extract binary policy data from a Policy Label for any of the policies

represented in the label.

• Set binary policy data in a Policy Label for any of the enforced policies.

5. Range Modules

For each enforced policy there must exist a module which manages its associated

range database. Each range module provides an interface to do the following:

■ Return the system low label for the associated policy.

■ Return the system high label for the associated policy.

6. Range Manager

The Range Manager is a replaceable module that is responsible for calling the

individual Range Modules to provide an interface for doing the following:

■ Return the combined system low label for all the enforced policies.

■ Return the combined system high label for all the enforced policies.

7. Clearance Modules

For each enforced policy there exists a module which manages the associated

User Clearance Database. It provides an interface to do the following:

28

• Return the maximum clearance for a given user ID

• Return the minimum clearance for a given user ID

• Return the default session level for a given user ID

8. Clearance Manager

The Clearance Manager is a replaceable module that is responsible for calling the

individual Clearance Modules to provide an interface to do the following:

■ Return the maximum session level allowed for a given user, in the form of a

complete Policy Label.

■ Return the minimum session level (clearance) for a given user, in the form of

a complete Policy Label.

■ Return the default session level for a given user., in the form of a complete

C. LAYERING DESIGN

This section describes how the modules are layered. The design is such that the

higher layers are dependent on the lower layers in a loop-free construct; modules in a

particular layer do not call modules in the same or higher layer. This section includes the

names of the modules enforcing the initial policy, whereas the last section described the

design in a very generic manner. The layering design is shown in Table 2. Note that

"BLP" is short for "Bell and La-Padula".

29

Layer Name Module Name

Control Layer Clearance

Manager

Range

Manager

Meta-Policy

Manager

Label Utility Layer Label Manager

Clearance Layer BLP Clearance Biba Clearance

Range Layer BLP Range Biba Range

Label Layer BLP Labels Biba Labels

Policy Layer BLP Policy Biba Policy

Table 2. Policy Enforcement Layering Desi gn

The following subsections describe the dependencies of the modules. In the

figures provided in these subsections, modules with an arrow pointing to another module

indicate dependencies.

1. Clearance Manager Dependencies

The Clearance Manager depends on the following layers: Label Utility Layer,

Clearance Layer, and the Policy Layer. The Clearance Layer provides the clearances for

a given user in binary format. It then assembles a complete Policy Label that represents

the overall clearance of the user by calling the Label Manager. Figure 4 graphically

illustrates the dependencies.

30

Clearance Manager

Label Manager '*'

BLP Clearance Biba Clearance

BLP Range Biba Range

BLP Labels / Biba Labels

BLP Policy * ^ Biba Policy

Figure 4. Clearance Manager Dependencies

2. Meta-Policy Manager Dependencies

The Meta-Policy Manager depends on modules in the Label Utility Layer and the

Policy Layer. It uses the Label Manager to extract individual pieces of a Policy Label

corresponding to the enforced policies of the system. These components are then passed

to the respective modules in the Policy Layer to determine the dominance relationship

between two Policy Labels. Figure 5 graphically illustrates the dependencies.

31

Meta-Policy Manager

Label Manager A

BLP Clearance Biba Clearance

BLP Range Biba Range

BLP Labels / Biba Labels

BLP Policy * Biba Policy

Figure 5. Meta-Policy Manager Dependencies

3. Range Manager Dependencies

The Range Manager depends on the modules in the following layers: Label Utility

Layer, Clearance Layer and the Policy Layer. It uses information from the Range Layer

and Policy Layer to obtain the currently configured system high and system low labels

for each enforced policy in binary format. It then uses the Label Layer to combine the

individual policy labels into one combined system high and system low Policy Label.

Figure 6 graphically illustrates the dependencies.

32

Range Manager

Label Manager

BLP Clearance ä. Biba Clearance

BLP Range Biba Range

BLP Labels / \ Biba Labels

BLP Policy * "^ Biba Policy

Figure 6. Range Manager Dependencies

4. Label Manager Dependencies

The Label Manager depends on the modules in the Label Layer and the Policy

Layer. Given a binary Policy Label, the Label Manager can convert it to a Human-

Readable Label with the information provided by the Label Layer. In addition, given a

Human-Readable Label, it can convert it to a binary Policy Label with information

provided by the Label Layer. Figure 7 graphically illustrates the dependencies.

33

Clearance Manager Range Manager Meta-Policy Manager

Label Manager

BLP Clearance

BLP Range

BLP Labels

BLP Policy

Biba Clearance

Biba Range

Biba Labels

Biba Policy

Figure 7. Label Manager Dependencies

5. Clearance Layer Dependencies

The various Clearance modules within the Clearance Layer are all dependent on

modules that exist in both the Label and Policy layers to provide label definitions and

translations. For example, the BLP Range module requires the services of the BLP Label

module to translate the configured system low and system high secrecy value from

human-readable form to binary form. The BLP Policy module defines the BLP secrecy

label. Figure 8 graphically illustrates the dependencies.

34

Clearance Manager Ranee Manager

Label Manager

Meta-Policv Manager

BLP Clearance. . Biba Clearance

BLP Range Y\ / Biba Range

BLP Labels * J (* Biba Labels

BLP Policy * ^ Biba Policy

Figure 8. Clearance Layer Dependencies

6. Range Layer Dependencies

The various Range modules within the Range Layer are all dependent on modules

that exist in both the Label and Policy layers, to provide label definitions and translations.

For example, the BLP Range module requires the services of the BLP Label module to

translate the configured system low and system high secrecy value from human-readable

form to binary form. The BLP Policy module defines the BLP secrecy label. Figure 9

graphically illustrates the dependencies.

35

Clearance Manager Range Manager Meta-Policv Manager

Label Manager

Figure 9. Range Layer Dependencies

7. Label Layer Dependencies

The various Label Modules within the Label Layer are all dependent on the

associated policy modules of the Policy Layer to provide the maximum acceptable values

for the policy-dependent binary labels. For example, the BLP Policy module must

provide the maximum number of secrecy levels allowed given the BLP label defined by

that module. Figure 10 graphically illustrates the dependencies.

36

Clearance Manager Ranee Manager Meta-Policy Manager

Label Manager

BLP Clearance Biba Clearance

BLP Range Biba Range

BLP Labels Biba Labels

BLP Policy *r ^* Biba Policy

Figure 10. Label Layer Dependencies

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

III. LINUX MODIFICATIONS

This chapter is divided into two major parts to describe the changes that need to

be made to Linux to support the designs proposed in Chapter II. These two sections are

"Operating System Modifications" and "Application Modifications".

A. OPERATING SYSTEM MODIFICATIONS

1. Basic Policy Enforcement

At the core of every access control policy is a description of how subjects can

read or write objects. Therefore, any system call that checks the kind of access given to a

subject must be modified to call the Control Layer to perform the additional policy

checks. The following system calls are affected:

■ open

■ opendir

■ access

Other system calls are not affected, such as readO and write(), because the open() call

determines the permission that is given to the opening subject when the file is opened.

2. Inode Changes

Linux is designed to simultaneously provide up to 15 different kinds of file

systems. This is done by providing a common file system interface, no matter which file

system is being accessed, which in turn calls the file system-specific interface to take the

appropriate action on a file system object, such as a file or directory. In Linux terms, the

common file system interface is referred to as the Virtual File System (VFS), whose

structures only exist in memory during execution, going away when the system is shut

down.

39

The VFS relies on the underlying persistent file system data structures stored on

disk to keep track of the visible objects and to provide the interface to perform operations

on those objects. The native Linux file system is known as the Second Extended File

System (EXT2) and has been available since 1993. It is this file system which has served

as the starting point for the design of Policy Enhanced Linux, viz., the EXT2 file system

has been modified to provide MAC. The VFS also had to be modified in order to provide

the necessary functionality.

Every object in the Linux file system has a unique structure associated with it,

called an inode, which keeps track of various properties of the object, e.g., its owner,

creation time and access rights, as well as the location on the disk where the object is

being stored. The inode is the obvious place to store the Policy Label for file system

objects. Therefore, all objects managed by Linux via inodes will be subjected to the new

policies. Figure 11 graphically shows an inode structure with some of its data elements,

and a representation of how its associated file is linked to disk blocks.

40

Access rights Data

Owner
Data

Size
Data

Times

Data t Data
...

/

Direct
references

to
data blocks

/,
Data

' / /
/

Data J Data
r
/

Data
Indirect block / X

' / /

w

w /
Data Two-step indirect reference

W

w

\
Three-step indirect reference \

w Data
Reserved space W

Figure 11. Structure of a Linux inode, After Ref. 12, p. 150

The non-MAC inode structure currently requires 128 bytes when compiled on an

Intel CPU. Inodes are stored in disk blocks that are typically 1,024 bytes in size,

allowing 8 inodes per block. The current structure of the inode has 8 bytes of reserved

space that will be used for our purposes. [Ref 12, p. 182] The initial implementation of

the MAC policies will use these reserved bytes to store the Policy Label. Future

implementations may expand the size of the inode in order to support a potentially large

number of enforced policies.

41

3. File Statistics

Many programs need to obtain information about file system objects. A prime

example is the command shell, when it needs to list the contents of the current directory.

To get the necessary information, the shell makes one call to the operating system for

each object in the current directory. The information returned for each object needs to

include the Policy Label. This requires a change to the following data structure:

■ struct stat

in addition to the following system calls:

■ stat

■ fstat

■ lstat.

4. Subject Changes

Now that labels are associated with file system objects, it is necessary to design

the other half of the policy-enforcement mechanism: associating Policy Labels with the

subjects that access the objects. If a subject passes the usual Linux DAC check, it must

then pass a MAC check such that the Policy Label of the object is compared with the

Policy Label of the subject.

Every subject in Linux has a data structure associated with it called task_struct. It

provides the information needed by the subject to run properly and information needed

by the kernel to make DAC decisions. For example, it contains the User ID and Group

ID of the subject, which are compared with the User ID and Group ID of the file system

objects the process tries to access. This structure is the obvious location for associating

Policy Labels with subjects.

It is necessary to give each subject two Policy Labels in order to support trusted

subjects. The two Policy Labels assigned to each subject are called the Read Label and

the Write Label, which have the following relationship:

42

Write Label < Read Label

The Read Label is the highest level that the subject can read, whereas the Write Label is the

lowest level that the subject can write. For single-level (untrusted subjects) these two labels

are equal.

5. Creating Objects

When a subject is running at a single level, objects created by the subject are

assigned the same Policy Label as the subject. When a subject is a multilevel subject, the

subject needs to communicate with the kernel to inform it of the Policy Label to assign to

each new object. This can only be accomplished by modifying the creat() system call to

accept the additional Policy Label parameter. This presents the following three

requirements for creating new objects:

Subject Read Class > Requested Object Class

Subject Write Class < Requested Object Class

Directory Class < Requested Object Class

The first two restrictions simply mean that the multilevel subject must be able to both

read and write at the requested access class of the new object. The latter restriction is

given so the file hierarchy descends from the root to its leaves in non-decreasing levels.

This restriction is necessary to avoid a "dangling object" that cannot be accessed by

subjects at its level. This restriction is part of the original Bell and LaPadula secrecy

policy, and is referred to as the "compatibility" property. [Ref. 8, p. 29]

Files are only classified at a single level. Directories, as objects that contain

names and locations of other objects, are also single-level objects, but the objects that

they point to may be at a different level than the level of the directory. However, there are

constraints placed on the creation of objects whose class is different from that of its

directory:

43

Subject Read Class > Requested Object's Directory

Subject Write Class < Requested Object's Directory

These last two restrictions mean that the multilevel subject must be able to both

read and write to the new object's directory. Therefore, the only way to create an object

in Policy Enhanced Linux with a different access class than that of the directory it is

being created in, is by using a trusted subject, e.g., a multilevel process whose Read and

Write class spans a range that includes the level of the directory and the level of the

object being created. When an object is created with an access class that is higher than

the directory it is being created in, it is referred to as an upgraded object.

Other designs have shown that it is possible for low-level subjects to create

upgraded objects [Ref 13], but it would require a major redesign of how object statistics

are stored and managed.

The following system calls have been identified as being affected by the changes

described above:

■ open

■ creat

■ mkdir

■ symlink

6. Deleting Objects

Deleting an object requires the same privileges as Creating an object because it

requires the modification of a directory. With respect to deleting objects, the following

system calls are affected:

■ unlink

■ rmdir

44

7. Deflection Directories

Existing Linux applications expect to be able to read and write to a temporary

directory, located at "/tmp" in the file system hierarchy. Because applications will be

running at a number of levels simultaneously, and because these applications are mostly

running as single-level subjects, this creates a problem, given the constraints described in

the previous subsections. Fortunately, this is not a new problem.

When other multilevel Unix designs were faced with this problem of either

modifying every existing application to write temporary files somewhere else, depending

on the level they were running at, or coming up with an alternative, they all came up with

an alternative. The best solution is something known as a Deflection Directory, first

proposed by Kramer [Ref. 14, p. 28], though it is also known by other names [Ref. 15, p.

82][Ref. 16, p. 86][Ref. 17, p. 65].

A Deflection Directory is a directory that contains sub-directories for each level

that is needed. Access to these directories is transparent to the applications. For

example, if a subject at the SECRET level writes a temporary file to a deflection

directory, say "/tmp", the kernel will first create a SECRET sub-directory, transparent to

the user, before creating the file in the SECRET sub-directory. From the user's point of

view, the file was created in "/tmp" because the underlying system deflects every

reference to "/tmp" to the "/tmp/SECRET " sub-directory for SECRET subjects. This

allows existing applications to work without modification, no matter what level they are

running. In order to prevent a covert channel, deflection directories can only be created

and deleted by a System Administrator. See Appendix A for more information about this

restriction with respect to covert channels.

In order to simplify the semantics of the deflection directory, only the System

Administrator is exempt from the deflection. The administrator sees the true directory

structure and can therefore list and access any file within a deflection hierarchy. This has

the negative side effect of not allowing higher-level subjects to read the lower-level

45

objects in these directories. This is a trade-off between the complexity involved with

determining when a subject wants to walk the deflected path, and when a subject wants to

explicitly walk down a different path in the deflected hierarchy. See Chapter IV for

additional information about alternative design decisions for deflection directories.

Over time, deflection directories can potentially grow quite large as new

transparent directories are created. This leads to the design choice to delete all

transparent directories under "/tmp" during system initialization.

The following system calls have been identified as being affected by the changes

described above:

Mkdir

Chdir

Fchdir

Chroot

open

opendir

stat

lstat

fstat

8. Updating Object Properties

Mandatory Access Control polcies, such as the Bell and LaPadula policy, do not

allow a high level subject to modify a file at a lower level; if this were allowed, a huge

security hole would be created. A less obvious observation is that any change in an

object's properties, such as the time of last access, creates a covert channel. Therefore, in

addition to the usual MAC constraints, all object properties can only be changed by a

subject at the same level of the object. This includes the following properties:

■ Name

■ Owner

46

■ Group

■ Size

■ Time of last access.

The following system calls must be modified in order to selectively update object

properties:

■ rename

■ truncate

■ ftruncate

■ chmod •

■ fchmod

■ chown

■ fchown

■ utime

■ utimes

Support for this design decision was only found in one publicly available

document [Ref. 18, pp. 53-54], though the interface of both Trusted Solaris and the XTS-

300 have a similar restriction. See Appendix A for more information about the related

covert channel.

9. The Super User

Unix systems have a user known as the Super User, which is associated with any

user who has a User ID value of 0, typically only given to a user with the name of "root."

This user bypasses all security checks on the system. One becomes the super user in one

of two ways: 1) logging in as the root user; 2) logging in as a regular user, executing the

"su" (super user) command and entering the password for the root user.

This ability of the super user to bypass security checks will continue to be

supported in Policy Enhanced Linux by including an exemption on the additionally

47

enforced policies. See Chapter IV for a presentation of additional work that can be done

to improve security in this area.

Unix also supports something known as "setuid" and "setgid" programs, where

executable files can be configured to run as the owner or group of the executing file,

respectively, instead of running as the user who executes the file. This feature is

typically used to allow a program to execute with root privileges, even when executed by

a non-root user. Despite the fact that these features are recognized as a security weakness

in Unix, Policy Enhanced Linux will not change how setuid and setgid programs work.

10. Setting Initial Policy Labels

Because the installation kernel will not (at least initially) be aware of labels, and

therefore will not be setting the labels on the installed files, an installation of Policy

Enhanced Linux will have uninitialized values in all object Policy Labels, as stored in

their inodes. Several alternatives exist for solving this problem. The solution chosen for

the initial implementation is to allow the root user to detect invalid labels and set them to

a system low value. See Appendix A for other design choices.

48

11. Summary of Changes

The system calls and structures that need to be modified are summarized in Table

System Calls System Structures

access mkdir inode

chdir open task_struct

chmod opendir stat

chown rename

chroot rmdir

creat stat

fchdir symlink

fchmod truncate

fchown - utime

fstat utimes

ftruncate unlink

lstat

Table 3. Summary of Affected System Calls and Structures

B. APPLICATION MODIFICATIONS

1. File System Creation Program (mke2fs)

After a disk partition has been created and (optionally) formatted, the mke2fs

utility is run on the partition to lay out the file system structures. If future

implementations of Policy Enhanced Linux require a larger inode, then this utility must

be re-compiled so it can create inodes of the proper size within a new partition.

49

2. Login Program (login)

The program called "login" presents the login interface to the user, checks a users

password, and starts up the user environment if the password is correct. This program

must be modified to also prompt the user for the desired session level. If no level is

given, then the user's default session level is used. This session level must pass the

following tests before the user environment is set up:

User's Minimum Session Level <= Session Level

System low <= Session Level <= System High

Session Level <= User's Clearance

The login program must also be modified to set the level of the user processes to

the approved session level.

If a valid user of the system tries to log into the system, i.e., if a user has an entry

in the "/etc/passwd" file, but does not have an entry in the Clearance Database, then the

login will fail, with the exception of the root user.

3. Object Statistics (Is, stat)

There are two user-level programs that can be used to display statistics about file

system objects: Is and stat. Both programs need to be modified to display the human-

readable Policy Label when requested. It would be helpful for debugging purposes to

have the stat command return either the human-readable label or an ASCII representation

of the binary label. The Is command is sometimes implemented as an internal shell

command, and would therefore require the modification of at least one shell, such as sh

and csh.

The Is command must also be modified to indicate when a directory is a

deflection directory when a full listing of a directory is made, i.e., when "Is -1" is used.

50

The 'd' that normally indicates that the entry is a directory must be replaced with a 'D' if

the directory is a deflection directory.

4. Process Status (ps)

The ps command must be modified to have a new command-line option to allow

the displaying of process Policy Labels.

5. Process Identification (id)

The id command must be modified to display the session level, in addition to the

group ID and user ID that are currently displayed with this command.

6. Directory Creation (mkdir)

A new option (-M) must be added to the supported command-line options of the

mkdir command. This new option will create the specified directory as a deflection

directory. A deflection directory can only be created by a System Administrator, i.e., the

root user.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

IV. CONCLUSIONS

A. PROGRESS MADE

A minimal number of modules were implemented to show the feasibility of

adding MAC policies to Linux. The following three (out of twelve) modules were either

fully or partially implemented:

■ Bell and LaPadula Policy (BLP_POL)

■ Label Manager (LBL_MGR)

■ Meta-Policy Manager (POLMGR)

A small amount of Linux code was modified to support the addition of policy

labels to subjects and objects, as well as the comparing of the labels to support the

enforcement of the Bell and LaPadula secrecy policy. A demonstration of this new

capability was produced, showing that a low-level subject could not read a high-level

object, even when the DAC permissions allowed it. The remaining modules and Linux

modifications can now be implemented with confidence that the system will work as

designed.

B. PROBLEMS ENCOUNTERED

As with any programming project involving a large amount of unfamiliar code,

such as porting a large application, a major hurdle was becoming familiar with the Linux

code. The reference material was extremely helpful in identifying the areas that needed

to be changed, and identifying some of the associated source files. [Ref. 12] [Ref.

27] [Ref. 28] Even with the reference material, however, there remained a lot of manual

searching and reading of source files to determine where particular changes needed to be

made, and to understand what the code was doing.

There were some initial problems of safely installing new instances of Policy

Enhanced Linux onto a target partition. The new kernels had to be moved from the

53

development Linux partition to a separate target partition where the modified kernels

were tested. In addition, initial installations of Policy Enhanced Linux would corrupt the

target partition and require reinstallation. Eventually, procedures were developed to

reduce turnaround time by making a backup image of a good target partition onto a third

partition, so that it could be quickly restored. However, there was still concern that

Policy Enhanced Linux would accidentally corrupt the development partition, or worse.

Therefore, daily backups were made of all changes.

In terms of debugging, the printk internal kernel function was invaluable. It has

the same syntax as the standard C printf function, but it does two things: 1) it prints the

specified string to the console; and 2) it writes the same string into the system log,

located at "/varAog/messages." At times there were so many debugging statements, that

useful and efficient debugging could not have taken place without being able to digest the

contents of the file from the development partition. There was one particular problem

when a non-root user could not log in, and the login screen would clear before the

debugging messages could be read; without the log, the problem would have taken longer

to debug.

C. FUTURE RESEARCH

1. Additional User Roles

This research topic emphasized the inclusion of additional security policies into

the Linux kernel. Another area of operating system security that needs to be addressed is

that of additional user roles, to support the Principle of Least Privilege [Ref. 19]. This

principle states that one should give a user (or process) only enough privilege to do his

job, and no more [Ref. 4, p. 49] [Ref. 4, p. 286] [Ref 20, p. 378]. This is not a principle

that is normally supported in a Unix environment.

Most Unix environments, including Linux, have only two privilege states: normal

user and super user. It is an all or nothing approach to privilege. A more secure

54

environment would have a spectrum of privilege that could be granted to users,

depending on what needed to be done. The following options could be researched in

more depth:

■ Remove the "su" command completely from the system and replace it with

some other mechanism for obtaining dynamic privilege.

■ Modify the "su" command to prompt the user for a particular user role, as well

as a Read and Write class.

2. Auditing

Unix already supports a logging feature, but it is not considered an auditing

system, with respect to security. A much more robust set of features must be designed

and implemented to support the selective auditing of objects and subjects, with varying

degrees of granularity. The Policy Label can be used to support this kind of auditing, but

it may require the implementation of a new system call to allow that portion of the label

to be modified for objects. User-level auditing should be straightforward.

A secure audit environment would also require the kind of separation of duties

that was discussed in the previous subsection, so that a user can be assigned as the Audit

Administrator. The Audit Administrator must have unique privileges to configure and

monitor the auditing features and logs, while being able to prevent other system

administrator roles from tampering with the audit trail.

An important part of the audit mechanism is a careful design of the audit record

format. In addition, it is very important to consider how the audit log is used and

managed, e.g., the user interface for reviewing the audit log in an effective and useful

manner.

55

3. Setuid and Setgid Programs

Policy Enhanced Linux does not try to tackle the complicated issues surrounding

Unix setuid and setgid programs. Because such programs are considered potential

security problems, this is an area that can benefit greatly from innovative ideas. Future

researchers should reference the efforts that have already been made in this area. [Ref.

21][Ref 22][Ref. 23][Ref. 24]

4. Deflection Directories

The current design for deflection directories is very restrictive because it does not

allow non-root users to access deflected directories at lower levels. To some, this may be

considered a feature by only allowing subjects of a particular class to access deflected

objects. However, in terms of user friendliness, a better approach seems appropriate. In

addition, because the root user is not deflected, its temporary files are stored directly in

"/tmp", which may represent a security concern.

One approach could be to have a new option for the "Is" command that notifies

Linux to try to not use deflection when finding the directory for the listing. However, in

order to read the objects, changes must be made to somehow communicate to the open()

system call an indicator that deflection should not be used. This could be done by either

adding a new parameter to the open() call, or by having a special token that the user must

specify at the beginning of the object's path.

5. Administrative Interface

As described in Appendix B, the new databases for configuring the new policy

interface are kept in text files. Changing a configuration requires a text editor and some

working knowledge of what needs to be configured, or at least some good

documentation. Such an interface is probably the preferred approach for experts but is

fraught with disaster for any novice who may have to administer the system. Some work

56

needs to be done in the area of Human-Computer Interaction to produce a better interface

to allow even a novice to correctly configure the new parts of the system associated with

the use of security labels.

With respect to the text files, a more secure design might consider having the

configuration files in a "hidden" part of the file system where only the administrative

interfaces could view and modify them. However, these visible human-readable files

have great educational value during hands-on exercises, allowing the user to gain a

greater understanding of the underlying mechanisms.

6. Privileges

Experience with other label-based systems indicates there will be some

applications that will not work in the restricted environment of Policy Enhanced Linux.

One way to allow such applications to work, without running them as the root user, is to

support a concept known as privileges. A privilege is an attribute that allows some aspect

of the overall security policy to be bypassed. For example, an executable program could

be configured to be exempt from the Mandatory Access Control policies. The more

granular the privilege set is, the closer the design comes to supporting the Principle of

Least Privilege. However, should such privileges be assigned to subjects, objects, or

both?

7. Trusted Path

There currently is no guarantee in Linux that the login prompt presented to the

user is coming from the real login program and not from a user program masquerading as

the login program. It is trivial to write a program that looks like the login program and

trick an unsuspecting user into entering a user name and password, which is then e-

mailed to the malicious user. The mechanism for thwarting this attack is known as the

Trusted Path, which is invoked by a special key sequence that cannot be intercepted by

programs running in the user space. When the system sees this sequence, all I/O to the

57

monitor and keyboard are suspended, and the real login program is started. Windows NT

uses the Control-Alt-Delete key sequence to start its Trusted Path. [Ref. 3, p. 171]

8. Policy Label Initialization

Some work needs to be done to provide a better way to initialize policy labels

after Linux has been installed. The initial implementation lets the root user detect when a

label is invalid and set it to system low. This is not a safe approach because a truly

corrupted label will not be detected, and its label will be set to something that is visible to

everyone on the system. The following list provides additional alternatives:

• Develop an off-line tool that can be used to set all the Policy Labels before the

first boot of Policy Enhanced Linux. This appears to be the most insecure

option because there will be a utility that can be used to modify label settings

at will.

• Modify Policy Enhanced Linux to set all the Policy Labels to a system low

label during its initial boot. Some thought must be given to how Linux will

determine it is the initial boot in a way that it cannot be tricked into thinking it

is the initial boot, when in fact it is not.

• Have a reserved user other than root, but with the same privileges, who can

detect invalid labels and set them to system low. The difference in this

approach versus the initial implementation is that the intended use of this user

is only for installation purposes. The account can be deleted after

initialization. This solves the problems associated with the root user.

9. Move or Port to the Newest Linux Kernel

Shortly after this thesis work was started, a new version of Linux was released.

The completed code needs to be ported to the latest kernel for future development. The

greatest concern, in terms of portability, is whether the newer version has added more

58

functionality to the EXT2 file system such that the hitherto reserved inode space has been

depleted.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

APPENDIX A. DESIGN DECISIONS RELATED TO COVERT CHANNELS

A covert channel is a method of transferring data that was "not intended for

information transfer at all." [Ref. 26, p. 615] They are the bane of Mandatory Access

Control (MAC) systems because they are the means for bypassing a MAC policy. [Ref 3,

pp. 83-84] They exist because all subjects on a system share resources, such as a

processor or secondary storage. By cleverly taking advantage of such resource sharing, a

user can cause information to be downgraded, violating the enforced policy, and probably

going unnoticed while doing it. The sections in this Appendix document design choices

that were made in order to prevent or minimize covert channels. However, it must be

pointed out once again that Policy Enhanced Linux is not a high-assurance system. In

addition, although the modifications to Linux have been made with some care, there is no

guarantee of robustness. The following two sections describe design decisions that were

made to remove potential covert channels.

A. DEFLECTION DIRECTORIES

Policy Enhanced Linux was designed to limit the creation and deletion of

deflection directories to System Administrators, i.e., the root user. This decision was

made to avoid a well-known covert channel with respect to upgraded directories [Ref. 25,

pp. 11-14]. If a subject at a lower level can create and delete a deflection directory, and if

the system does not allow a subject to delete a directory with files in it, then a subject at a

higher-level can signal bits of information to the lower-level subject by carefully timing

the creation and/or deletion of files in a deflection directory to correspond to binary ones

and zeros, respectively. One of the tutorials for the Introduction to Computer Security

course demonstrates this principle on a Trusted Solaris system that has this design flaw.

There is another design option available for limiting this channel but it is not a

"safe" option: a subject can be allowed to create deflection directories then later delete

them, but the system cannot be allowed to return an error if the directory has files in it

(say, at a higher level). This means that the user has more flexibility, but it allows a user

61

to accidentally delete a directory that has higher-level files in it without knowing it. This

is clearly an undesirable side-effect. In addition, it does not completely close the channel

because a user can possibly observe how long it takes to delete a very full directory

versus an empty directory.

B. OBJECT PROPERTIES

The restriction on the changing of object properties to only those subjects that are

running at the same level as the object was first introduced when considering the covert

channel related to the modification of an object's last time of access. Whenever a file

system object is accessed, the inode is updated with the time it occurred. In a multilevel

environment, this should only be allowed when the subject accessing the object is at the

same level as the object being accessed. It is obvious that a higher-level subject can read

lower-level objects, but the fact that it happened should not be maintained by the

operating system. Otherwise, a high-level subject could cooperate with a lower-level

subject to transfer bits of information by carefully timing the access and/or non-access of

files in such a way to correspond to binary ones and zeros, respectively. This weakness

extends to all object properties. In fact, if object names are allowed to be changed from a

higher level, then this would go beyond a covert channel into the realm of storage

channel. Such a weakness is more of an overt channel than a covert channel [Ref. 26].

There is concern that some applications may fail because of these restrictions.

One way to keep these restrictions, yet allow such applications an environment to run

successfully, would be to introduce the concept of privileges. Privileges are a way to

exempt subjects from portions of the underlying security mechanisms. In this example,

the "broken" application could be assigned a privilege that grants it the ability to modify

the object properties even when they exist at lower levels. Such privileges should only be

assigned by a System Administrator, and with ample warning of the security risk that

such a setting would create.

62

APPENDIX B. DATABASE DESIGN

This appendix provides a detailed description of the databases described in

Chapter II. It is expected that the databases exist as text files that can be modified

directly with a text editor, with the exception of the Policy Label, which is always in

binary format. Therefore, numeric fields are entered as text strings that are then

translated by the module into the corresponding binary values. This is done to make the

administration of the system easier. In addition, these databases can have un-interpreted

comments if the first character in a line has the '#' character. Figure 12 provides an

example of a database with comments and "actual" values:

Fictitious Database (1st commented line)
The first non-commented line is given below:
VALUE 1 VALUE2

Figure 12. Example of Comments in a Database

A. POLICY LABEL

Each object has a Policy Label associated with it, while each subject has two

Policy Labels. These labels contain the fields shown Table 4.

Field Description

Version The version of the label.

SecLevel The secrecy level. The greater the level, the greater the secrecy.

SecCats The secrecy categories. Each bit represents a category that is On or Off.

IntLevel The integrity level. The greater the level, the greater the integrity.

IntCats The integrity categories. Each bit represents a category that is On or Off.

Reserved Unused and reserved space.

Table 4. Policy Label Format

63

The Policy Label, with the fields defined in the previous table, has the structure

defined in the Figure 13, according to the initial definition provided by the Label

Manager. Data for additional policies can be added in the reserved field.

LSB MSB
Version

(4 bits)

SecLevel

(4 bits)

SecCats

(12 bits)

IntLevel

(4 bits)

IntCats

(12 bits)

Reserved

(28 bits)

0 3 4 7 8 19 20 23 24 35 36 63

Figure 13. Policy Label Structure

B. LABEL DATABASE

There exists one Label Database for each enforced policy. With the exception of

the version field, the label databases are policy-dependent. It is not possible to specify

how a policy should map binary labels to human-readable labels without knowing

something about the policy. The initial design of the Bell-LaPadula and Biba Label

Databases is shown in Table 5.

Field Description

Version The version of the database. It is a non-negative integer on the first non-

comment line of the database

Level A Boolean value (1 or 0) indicating whether the binary/string combination

that follows is for a level or a category: 1 = level, 0 = category.

Binary A string representing a hexadecimal value that corresponds to a

secrecy/integrity level or category.

String The Human-Readable portion of the corresponding hexadecimal value.

Table 5. Policy-Dependent Portion of the BLP and Biba Label Databases

64

The Level, Binary and String fields are all on one line in the associated text file,

separated by white space. These lines are repeated through the rest of the database. The

database size is dynamic, depending on the number of levels and/or categories that are

actually defined by an administrator.

An administrator can define levels and categories that are not actually being used,

as long as they fall within the valid range of values defined by the policy. For example, if

a system intends to use only four secrecy levels, an administrator may want to define the

unused levels and categories with something descriptive, such as "UNUSED" or

"INVALID".

C. USER CLEARANCE DATABASE

There exists one User-Clearance Database for each enforced policy. The

information is stored in a human-readable format. This is necessary since the database

will be modified via a text editor. After the version number, the remaining four fields in

this database all occupy one line in the database per user. The four fields of the database

are described in Table 6.

Field Description

Version The version of the database. It is a non-negative integer on the

first non-commented line of the database.

UserlD The Unix User ID associated with the following clearances.

MinSession In terms of a session level, the lowest level that the user can

start a session at.

Clearance In terms of a session level, the highest level that the user can

start a session at.

DefaultSession If a user does not specify a session level during the login

sequence, he will be logged in at this session level.

Table 6. User Clearance Database

65

Each set of Human-Readable Labels in the database must satisfy the following

relationship: MinSession < DefaultSession < Clearance.

D. RANGE DATABASE

There exists one Range Database for each enforced policy. Each database has

three fields that are used to indicate the legal range of access that subjects can be given

when executing on the system. Since this value can be changed during the lifetime of a

system, there may be objects on the system that fall outside of this range. Table 7

describes these three fields.

Field

Version

SysHigh

SysLow

Description

The version of the database. It is a non-negative integer on the first non-

commented line of the database.

This is a human-readable label defining the highest level that any subject is

allowed to write. This may in fact be lower than a user's MaxClearance.

This value is on the second non-commented line of the database

This is a human-readable label defining the lowest level that any subject is

allowed to write. This may in fact be higher than a user's MinClearance.

This value is on the third non-commented line in the database.

Table 7. Range Database

66

APPENDIX C. MODULE DESIGN

A. POLICY ENHANCED LINUX COMMON TYPES MODULE (PELJTYP)

This module defines common types and constants used by other modules.

External Types and Constants:

typedef unsigned short Bits 16;

typedef unsigned long long Bits64;

typedef int Boolean;

#defmeNO_ERROR 0

#defineTRUE 1

#define FALSE 0

#define ALLOWED TRUE

#define DISALLOWED FALSE

#define VALID TRUE

#define INVALID FALSE

#define INCLUDED TRUE

#define EXCLUDED FALSE

B. BELL AND LAPADULA POLICY MODULE (BLP_POL)

This module defines the externally visible structure of the Bell and La-Padula

secrecy label. The module interface is used to compare two secrecy labels to determine if

one label dominates the other, to make queries about a given label, and to make changes

to a label. This module does not depend on any other module.

External Entry Points:

■ BlpPolInitLabel

■ BlpPolSetLevel

67

BlpPolGetLevel

BlpPolAddCategory

BlpPolDelCategory

BlpPolTestCategory

BlpPolDominates

BlpPolRead

BlpPolWrite

External Types and Constants:

#define MAX_SEC_LEVELS

#defineMAX SEC CATS

16 /* max # of secrecy levels */

12 /* max # of secrecy categories */

/* error codes (decimal) */

#define BLPPOL_ERRBASE

#defme BLPPOL_BADLEVEL

#define BLPPOL BADCATEGORY

1000

BLPPOL_ERRBASE

BLPPOL ERRBASE+1

typedef Bitslö BlpLabelType;

typedef Bits 16 BlpLevelType;

typedef Bitsl6 BlpCatType;

1. BlpPolInitLabel

This entry point is used to initialize a BLP secrecy label.

a. External Interface

void BlpPolInitLabel(BlpLabelType *secLabel);

b. Inputs

<none>

68

c. Outputs

■ secLabel

The initialized BLP secrecy label.

d. Processing

Call BlpPolSetLevel, passing in the lowest secrecy level as in put, and the

input secLabel as output. For all categories (from 0 to MAX_SEC_CATS-1) call

BlpPolDelCategory.

2. BlpPolSetLevel

This entry point is used to set the level portion of the BLP secrecy label to a given

value.

a. External Interface

int BlpPolSetLevel(

const BlpLevelType secLevel,

BlpLabelType *secLabel

};

b. Inputs

■ secLevel

The secrecy level to put into the input secLabel.

c. Outputs

■ secLabel

69

The label modified by setting its secrecy level field.

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < secLevel < MAX_SEC_LEVELS.. Otherwise, return the BLPPOL_BADLEVEL

error code as the function result.

Set the portion of the output secLabel that holds the secrecy level to the

value stored in the input secLevel.

Return the value of NO_ERROR as the function result.

3. BlpPolGetLevel

This entry point is used to return the value of the current BLP secrecy level of a

given BLP secrecy label.

a. External Interface

int BlpPolGetLevel(

const BlpLabelType secLabel,

BlpLevelType * secLevel

};

70

b. Inputs

■ secLabel

The secrecy label containing the secrecy level to be copied and

returned to the caller.

c. Outputs

■ secLevel

The secrecy level that is extracted from the input SecLabel.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

d. Processing

Copy the portion of the input secLabel storing the secrecy level, and store

the value in tmpLevel. If the following is TRUE, then continue:

0 < tmpLevel < MAX_SEC_LEVELS. Otherwise, return the BLPPOL_BADLEVEL

error code as the function result.

Copy tmpLevel to the output secLevel, and return the value NO_ERROR

as the function result.

4. BlpPolAddCategory

This entry point is used to add a particular category to the set of categories stored

in a given BLP secrecy label. A category is referenced by its numerical value.

71

a. External Interface

int BlpPolAddCategory(

const BlpCatType category,

BlpLabelType *secLabel

};

b. Inputs

■ category

The specific category to add to the current set of categories in a

secrecy label.

c. Outputs

■ secLabel

The secrecy label with the given category added to its set of stored

categories.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_SEC_CATS. Otherwise, return the BLPPOL_BADCATEGORY

error code as the function result.

Set the input category bit in the output secLabel to 1, then return the value

of NO ERROR as the function result.

72

5. BlpPoIDelCategory

This entry point is used to delete a particular category from the set of categories

stored in a given BLP secrecy label. A category is referenced by its numerical value.

a. External Interface

int BlpPolDelCategory(

const BlpCatType category,

BlpLabelType *secLabel

};

b. Inputs

■ category

The specific category to delete from the current set of categories in a

secrecy label.

c. Outputs

■ secLabel

The secrecy label with the given category deleted from its set of stored

categories.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

73

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_SEC_CATS. Otherwise, return the BLPPOL_BADCATEGORY

error code as the function result.

Set the input category bit in the output secLabel to 0, then return the value

of NO_ERROR as the function result.

6. BIpPolTestCategory

This entry point is used to test whether a particular category is currently in the set

of stored categories in the given BLP secrecy label.

a. External Interface

int BlpPolTestCategory(

const BlpLabelType secLabel,

const BlpCatType category,

Boolean * status

};

b. Inputs

■ secLabel

The secrecy label to use when testing whether the category is currently

present.

■ category

The specific category to look for.

74

c. Outputs

■ status

A boolean value indicating whether the category is present

(INCLUDED) or not (EXCLUDED).

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_SEC_CATS. Otherwise, set the output status to EXCLUDED and

return the BLPPOL_BADCATEGORY error code as the function result.

If the input category bit in the input secLabel is turned on (1), then set the

output status to INCLUDED. Otherwise, set the output status to EXCLUDED. Return

the value of NOERROR as the function result.

7. BlpPolDominates

This entry point compares the first BLP secrecy label with the second secrecy

label and communicates whether the first label dominates the second label.

a. External Interface

int BlpPolDominates(

const BlpLabelType highLabel,

const BlpLabelType lowLabel,

Boolean * dominates

);

75

b. Inputs

■ highLabel

The BLP secrecy label to be tested for dominance against the input

lowLabel.

■ lowLabel

The BLP secrecy label to be tested for dominance against the input

highLabel.

c. Outputs

■ dominates

A value of TRUE or FALSE, indicating whether the input highLabel

dominates the input lowLabel.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

d. Processing

Get the secrecy level stored in the input highLabel by calling

BlpPolGetLevel. If the function's return value is not equal to NO_ERROR, then return

the value to the caller as this function's result (error). Otherwise, assign the returned

level to levelHigh.

Get the secrecy level stored in the input lowLabel by calling

BlpPolGetLevel. If the function's return value is not equal to NO_ERROR, then return

the value to the caller as this function's result (error). Otherwise, assign the returned

level to levelLow.

76

If levelHigh < levelLow, then assign FALSE to the output dominates, and

return a value of zero (success) as the function result.

following:

For every category bit from zero to (MAX_SEC_CATS-1), do the

■ Get the state of the category bit in the input highLabel by calling

BlpPolTestCategory. If the function's return value is not equal to

NO_ERROR, then return the value to the caller as this function's

result (error). Otherwise, if INCLUDED is returned, then assign the

TRUE to CatHigh. If EXCLUDED is returned, then assign FALSE to

CatHigh.

■ Get the state of the category bit in the input lowLabel by repeating the

above step, replacing highLabel with lowLabel, and TRUE or FALSE

to catLow.

■ If the value of catHigh is FALSE (category off), and the value of

catLow is TRUE (category on), then there is no domination. Set the

output dominates to FALSE and return the value of NOERROR as

the function result. Otherwise, continue.

If processing gets this far, then the input highLabel does dominate the

input lowLabel. Set the output dominates to TRUE, and return the value of NOERROR

as the function result.

8. BlpPolRead

This entry point determines whether read access is allowed by the secrecy policy,

given the input subject and object secrecy labels.

77

a. External Interface

int BlpPolRead(

const BlpLabelType subjectLabel,

const BlpLabelType objectLabel,

Boolean * access

);

b. Inputs

■ subjectLabel

The BLP secrecy label for the subject that wants to perform a read

operation.

■ objectLabel

The BLP secrecy label for the object to be read.

c. Outputs

■ access

A value of ALLOWED or DISALLOWED, indicating whether the

read operation requested by the associated subject is allowed for the

associated object, or whether it should be disallowed.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Determine if the input subjectLabel dominates the input objectLabel by

calling BlpPolDominates, passing the input subjectLabel as the "highLabel", and the

78

input objectLabel as the "lowLabel". If the function's return value is not equal to

NO_ERROR, then return it as this function's return value (error).

Otherwise, if the input subjectLabel does dominate the input objectLabel,

then set the output access to ALLOWED. Otherwise, set the output access to

DISALLOWED.

Return the value of NOERROR as the function result.

9. BlpPoIWrite

This entry point determines whether a subject may have write access, with respect

to the secrecy policy, given the input subject and object secrecy labels. A write operation

is only allowed if both labels are valid and equal.

a. External Interface

int BlpPolWrite(

const BlpLabelType subjectLabel,

const BlpLabelType objectLabel,

Boolean *access

);

b. Inputs

■ subjectLabel

The BLP secrecy label for the subject that wants to perform a write

operation.

■ objectLabel

The BLP secrecy label for the object to be modified.

79

c. Outputs

■ access

A value of ALLOWED or DISALLOWED, indicating whether the

write operation requested by the associated subject is allowed for the

associated object, or disallowed.

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

NOTE: this function does not just perform a bit-wise AND operation on

the two labels to determine whether they are equal because the labels could be invalid.

By using the BlpPolDominates, the labels are properly verified. If the two labels

dominate each other, then they are equal.

Call BlpPolDominates, passing the input subjectLabel as the "highLabel",

and the input objectLabel as the "lowLabel". If the function's return value is not equal to

NO_ERROR, then return it as this function's return value (error). If subjectLabel does

not dominate objectLabel, set the output access to DISALLOWED, and return

NO_ERROR as the function result.

Call BlpPolDominates, passing the input objectLabel as the "highLabel",

and the input subjectLabel as the "lowLabel". If the function's return value is not equal

to NO_ERROR, then return it as this function's return value (error). If objectLabel does

not dominate subjectLabel, set the output access to DISALLOWED, and return

NO_ERROR as the function result.

If the labels dominate each other, then they are equal: set the output access

to ALLOWED, and return NO_ERROR as the function result.

80

C. BIBA POLICY MODULE (BIB_POL)

This module defines the externally visible structure of the Biba integrity label.

The module interface is used to compare two integrity labels to determine if one label

dominates the other, to make queries about a given label, and to make changes to a label.

This module does not depend on any other module.

External Entry Points:

■ BibPolInitLabel

■ BibPolSetLevel

■ BibPolGetLevel

■ BibPolAddCategory

■ BibPolDelCategory

■ BibPolTestCategory

■ BibPolDominates

■ BibPolRead

■ BibPolWrite

External Types and Constants:

#define MAX_INT_LEVELS

#defineMAX INT CATS

16 /* max # of integrity levels */

12 /* max # of integrity categories */

/* error codes (decimal) */

#define BIBPOL_ERRBASE

#defme BIBPOL_BADLEVEL

#defme BIBPOL BADCATEGORY

1100

BIBPOL_ERRBASE

BIBPOL ERRBASE+1

typedef Bits 16 BibLabelType;

typedef Bits 16 BibLevelType;

typedef Bits 16 BibCatType;

81

1. BibPolInitLabel

This entry point is used to initialize a Biba integrity label.

a. External Interface

void BibPolInitLabel(BibLabelType *intLabel);

b. Inputs

<none>

c. Outputs

■ intLabel

The initialized Biba integrity label.

d. Processing

Set all the bits in the output intLabel to zero.

2. BibPolSetLevel

This entry point is used to set the level portion of the Biba integrity label to a

given value.

a. External Interface

int BibPolSetLevel(

const BibLevelType intLevel,

BibLabelType *intLabel

};

82

b. Inputs

■ intLevel

The integrity level to put into the input intLabel.

c. Outputs

■ intLabel

The label modified by setting its integrity level field.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < intLevel < MAXJNTLEVELS. Otherwise, return the BIBPOLJBADLEVEL error

code as the function result.

Set the portion of the output intLabel that holds the integrity level to the

value stored in the input intLevel.

Return the value of NOERROR as the function result.

3. BibPolGetLevel

This entry point is used to return the value of the current Biba integrity level of a

given Biba integrity label.

83

a. External Interface

int BibPolGetLevel(

const BibLabelType intLabel,

BibLevelType *intLevel

};

b. Inputs

■ intLabel

The integrity label containing the integrity level to be copied and

returned to the caller.

c. Outputs

■ intLevel

The integrity level that is extracted from the input intLabel.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Copy the portion of the input intLabel that stores the integrity level, and

store the value in tmpLevel. If the following is TRUE, then continue: 0 < tmpLevel <

MAXJNTLEVELS. Otherwise, return the BIBPOL_BADLEVEL error code as the

function result.

Copy tmpLevel to the output intLevel, and return NO_ERROR as the

function result.

84

4. BibPolAddCategory

This entry point is used to add a particular category to the set of categories stored

in the given Biba integrity label. A category is referenced by its numerical value.

a. External Interface

int BibPolAddCategory(

const Category Type category,

BibLabelType *intLabel

};

b. Inputs

■ category

The specific category bit to add to the current set of categories in an

integrity label.

c. Outputs

■ intLabel

The integrity label with the given category added to its set of stored

categories.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

85

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_INT_CATS. Otherwise, return the BIBPOL_BADCATEGORY

error code as the function result.

Set the input category bit in the output intLabel to 1, then return the value

NO_ERROR as the function result.

5. BibPolDelCategory

This entry point is used to delete a particular category from the set of categories

stored in a given Biba integrity label. A category is referenced by its numerical value.

a. External Interface

int BibPolDelCategory(

const BibCatType category,

BibLabelType *intLabel

};

b. Inputs

■ category

The specific category to delete from the current set of categories in an

integrity label.

86

c. Outputs

■ intLabel

The integrity label with the given category deleted from its set of

stored categories.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_INT_CATS. Otherwise, return the BIBPOLJBADCATEGORY

error code as the function result.

Set the input category bit in the output intLabel to 0, then return the value

NO_ERROR as the function result.

6. BibPolTestCategory

This entry point is used to test whether a particular category is currently in the set

of stored categories in the given Biba integrity label.

a. External Interface

int BibPolTestCategory(

const BibaLabelType intLabel,

const CategoryType category,

boolean * status

};

87

b. Inputs

■ intLabel

The integrity label to use when testing whether the category is

currently present.

■ category

The specific category to look for.

c. Outputs

■ status

A value of INCLUDED or EXCLUDED indicating whether the

category is present (INCLUDED) or not (EXCLUDED).

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

If the following relationship is TRUE, then continue:

0 < category < MAX_INT_CATS. Otherwise, set the output status to EXCLUDED, and

return the BIBPOL_BADCATEGORY error code as the function result.

If the input category bit in the input intLabel is turned on (1), then set the

output status to INCLUDED. Otherwise, set the output status to EXCLUDED. Return

the value of NO ERROR as the function result.

88

7. BibPolDominates

This entry point compares the first Biba integrity label with the second integrity

label, returning TRUE if the first label dominates the second label. Otherwise it returns

FALSE.

a. External Interface

int BibPolDominates(

const BibLabelType highLabel,

const BibLabelType lowLabel,

Boolean *dominates

);

b. Inputs

■ highLabel

The Biba integrity label to be tested for dominance against the input

lowLabel.

■ lowLabel

The Biba integrity label to be tested for dominance against the input

highLabel.

c. Outputs

■ dominates

A boolean value of TRUE or FALSE, indicating whether the input

highLabel dominates the input lowLabel.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

89

d. Processing

Get the integrity level stored in the input highLabel by calling

BibaPolGetLevel. If the function's return value is not equal to NO_ERROR, then return

the value to the caller as this function's result (error). Otherwise, assign the returned

level to levelHigh.

Get the integrity level stored in the input lowLabel by calling

BibPolGetLevel. If the function's return value is not equal to NO_ERROR, then return

the value to the caller as this function's result (error). Otherwise, assign the returned

level to levelLow.

If levelHigh < levelLow, then assign FALSE to the output dominates and

return the value of NO ERROR as the function result.

following:

For every category bit from zero to (MAX_INT_CATS-1), do the

■ Get the state of the category bit in the input highLabel by calling

BibPolTestCategory [BIB_POL]. If the function's return value is not

equal to NO_ERROR, then return the value to the caller as this

function's result (error). Otherwise, if the category is present, assign

TRUE to catHigh. If the category is not present, assign FALSE to

catHigh.

■ Get the state of the category bit in the input lowLabel by repeating the

above step, replacing highLabel with lowLabel, and catHigh with -

catLow.

■ If the value of catHigh is FALSE (category off), and the value of

catLow is TRUE (category on), then there is no domination. Set the

output dominates to FALSE and return the value of NO_ERROR as

the function result. Otherwise, continue.

90

If processing gets this far, then the input highLabel does dominate the

input lowLabel. Set the output dominates to TRUE, and return the value of NOERROR

as the function result.

8. BibPolRead

This entry point determines whether read access is allowed by the Biba policy,

given the input subject and object integrity labels.

a. External Interface

int BibPolRead(

const BibLabelType subjectLabel,

const BibLabelType objectLabel,

Boolean * access

);

b. Inputs

■ subjectLabel

The Biba integrity label for the subject requesting read access.

■ objectLabel

The Biba integrity label for the object to be read.

c. Outputs

■ access

A value of ALLOWED or DISALLOWED, indicating whether the

read operation requested by the associated subject is allowed for the

associated object, or not.

91

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

Determine if the input objectLabel does dominate the input subjectLabel

by calling BibPolDominates, passing the input objectLabel as the "highLabel", and the

input subjectLabel as the "lowLabel". If the function's return value is not equal to

NO_ERROR, then return it as this function's return value (error).

Otherwise, if the input objectLabel does dominate the input subjectLabel,

then set the output access to ALLOWED. Otherwise, set the output allowed to

DISALLOWED.

Return the value of NOERRÖR as the function result.

9. BibPolWrite

This entry point determines whether a subject may have write access, with respect

to the Biba policy, given the input subject and object integrity labels. A write operation

is only allowed if both labels are equal.

a. External Interface

int BibPolWrite(

const BibLabelType subjectLabel,

const BibLabelType objectLabel,

Boolean *access

);

92

b. Inputs

■ subjectLabel

The Biba integrity label for the subject requesting write access.

■ objectLabel

The Biba integrity label for the object to be modified.

c. Outputs

■ access

A value of ALLOWED or DISALLOWED, indicating whether the

write operation requested by the associated subject is allowed for the

associated object, or not.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

NOTE: this function does not just perform a bit-wise AND operation on

the two labels to determine whether they are equal because the labels could be invalid.

By using the BibPolDominates, the labels are properly verified. If the two labels

dominate each other, then they are equal.

Call BibPolDominates, passing the input subjectLabel as the "highLabel",

and the input objectLabel as the "lowLabel". If the function's return value is not equal to

NO_ERROR then return it as this function's return value (error). If subjectLabel does

not dominate objectLabel, set the output access to DISALLOWED, and return

NO ERROR as the function result.

93

Call BibPolDominates, passing the input objectLabel as the "highLabel",

and the input subjectLabel as the "lowLabel". If the function's return value is not equal

to NO_ERROR, then return it as this function's return value (error). If objectLabel does

not dominate subjectLabel, set the output access to DISALLOWED, and return

NO_ERROR as the function result.

If the labels dominate each other, then they are equal: set the output access

to ALLOWED, and return NO_ERROR as the function result.

D. BELL AND LAPADULA LABEL MODULE (BLP_LBL)

This module is responsible for mapping binary Bell and LaPadula secrecy labels

into human-readable secrecy labels (and vice versa). This module is dependent upon the

BLP_POL module.

External Entry points:

■ BlpLbllnit

■ BlpLblBinToStr

■ BlpLblStrToBin

External types and constants:

#defme MAX_LEVEL_STR

#defineMAX CAT STR

10

10

/* error codes (decimal) */

#defme BLPLBLJERRBASE

#define BLPLBL_NOFILE

#define BLPLBL_BADVERSION

#define BLPLBL_NOVERSION

#define BLPLBL_NOLEVELBITS

#define BLPLBL BADLEVEL

1200

BLPLBL_ERRBASE

BLPLBL_ERRBASE+1

BLPLBL_ERRBASE+2

BLPLBL_ERRBASE+3

BLPLBL ERRBASE+4

94

#define BLPLBL_BADCATEGORY BLPLBL_ERRBASE+5

#defme BLPLBL_DUPCATEGOREY BLPLBL_ERRBASE+6

#defme BLPLBL_DUPLEVEL BLPLBL_ERRBASE+7

#defme BLPLBLLONGSTR BLPLBL_ERRBASE+8

#define BLPLBL_UNDEFLEVEL BLPLBL_ERRBASE+9

#define BLPLBL_UNDEFCATEGORY BLPLBL_ERRBASE+10

Internal Databases:

/* Range of valid configuration database versions */

#defme MIN_VERSION 1

#define MAX_VERSION 1

/* This structure holds a mapping of a secrecy level */

typedef struct {

int valid,

int level,

char subLabel[MAX_LEVEL_STR],

} LevelRecordType;

/* This structure holds a mapping of a secrecy category */

typedef struct {

int valid;

int category;

char subLabel[MAX_CAT_STR];

} CatRecordType;

/* The following comprise the internal representation of the */

/* BLP Label Database. */

LevelRecordType levelMap[MAX_SEC_LEVELS];

CatRecordType catMap[MAX_SEC_CATS];

95

1. BlpLbllnit

This entry point is used to initialize the module during system startup when the

system is still in single-user, single-process mode. Initialization includes opening the

associated Label database, reading the contents into memory in internally static databases

(for quick reference), then closing the file.

a. External Interface

void BlpLbllnit(void);

b. Inputs

<none>

c. Outputs

<none>

When no errors are encountered, the procedure returns to the caller. If an

error is encountered, an error message is displayed to the system console, and the system

is halted.

d. Processing

Open the BLP Label database file, located at "/security/blpLabel". If the

file does not exist, display the BLPLBL_NOFILE error code and halt the system.

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MIN_VERSION) AND (version <= MAX VERSION)

96

Otherwise, display the BLPLBLJBADVERSION error code and halt the system. If the

end of file is reached before a non-comment line is encountered, then display the

BLPLABEL_NOVERSION error code and halt the system.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Initialize the levelMap and catMap internal databases by setting the valid

field in each entry of the database to FALSE.

Read a line of text from the opened file until another non-comment line is

read. This line contains the level, binary and string fields of the database. If the value of

the level field is "1" (indicating the string is for a level), do the following:

■ Make sure that: 0 < binary < MAX_SEC_LEVELS [BLP_POL]; if

this relationship is not true, then display the error

BLPLBL_BADLEVEL code and halt the system.

■ Verify that the length of the string field is less than

MAX_LEVEL_STR. If it is not, then display the

BLPLBLJLONGSTR error code and halt the system.

■ Look at each index of the levelMap array until the valid field of the

array index is set to FALSE. For each valid entry, make sure the level

field of the array index is not the same as the binary value just read

from the file. If a duplicate is found, then return the

BLPLBLJDUPLEVEL error code and halt the system.

■ When an invalid entry is found, set the valid field to TRUE. Copy the

value in the binary field into the level field of the array index. Copy

the string value into the subLabel field of the array index.

Otherwise, if the value of the level field is "0" (indicating the string is for

a category), then do the following:

97

■ Make sure that: 0 < binary < MAX_SEC_CATS [from BLP_POL];

if this relationship is not true, then display the error

BLPLBL_BADCATEGORY code and halt the system.

■ Verify that the length of the string field is less than MAX_CAT_STR.

If it is not, then display the error BLPLBLJLONGSTR code and halt

the system.

■ Look at each index of the catMap array until the valid field of the array

index is set to FALSE. For each valid entry, make sure the category

field of the array index is not the same as the binary value just read

from the file. If a duplicate is found, then return the

BLPLBLJDUPCATEGORY error code and halt the system.

■ When an invalid entry is found, set the valid field to TRUE. Copy the

value in the binary field into the category field of the array index.

Copy the string value into the subLabel field of the array index..

Keep reading lines into the database as indicated in the previous

paragraph, until the end-of-file is reached.

Close the opened file and return to the caller.

2. BlpLblBinToStr

This entry point is used to map a binary BLP secrecy label to a human-readable

secrecy label.

a. External Interface

int BlpLblBinToStr(

const BlpLabelType binaryLabel,

char stringLabel[]

);

98

b. Inputs

■ binaryLabel

The binary version of a BLP secrecy label.

c. Outputs

■ stringLabel

The human-readable version of a BLP secrecy label.

■ <function result>

If no errors are encountered during processing, then a value of

NO_ERROR is returned as a function result. Otherwise, an error code

is returned.

d. Processing

Get the secrecy level by calling BlpPolGetLevel [BLP_POL], passing the

input binaryLabel. If the returned value is not equal to NO_ERROR, then return that

value as this function's return value (error). Otherwise, assign the returned secrecy level

to secLevel.

Look at each valid field of each index of the levelMap array, comparing

secLevel to the level field of the array index. When a match is found, copy the associated

string from the array index to the start of the output stringLabel. If no match is found,

then return the BLPLBLJUNDEFLEVEL error code as the function result.

For every category bit in the input binaryLabel, (0 to MAX_SEC_CATS-

1) do the following:

■ Determine whether the category bit is turned on by calling

BlpPolTestCategory [BLP_POL], passing the input binaryLabel. If

99

the function result is not equal to NO_ERROR, then return this value

as this function's return value.

■ Otherwise, if the bit is on, append a space to the end of the output

stringLabel.

■ Look at each valid field of each index of the catMap array, comparing

the current category bit with the value stored in the category field of

the array index. When a match is found, append the associated string

from array index to the output stringLabel. If no match is found, then

return the BLPLBLJUNDEFCATEGORY error code.

Return NO_ERROR as the function result.

3. BIpLblStrToBin

This entry point is used to map a human-readable BLP secrecy label to a binary

BLP secrecy label.

a. External Interface

int BlpLblStrToBin(

const char stringLabel [];

BlpLabelType *binaryLabel;

);

) b. Inputs

■ stringLabel

A human-readable version of a BLP secrecy label.

100

c. Outputs

■ binaryLabel

The binary version of the input stringLabel.

■ <function result>

If no errors are encountered during processing, then a value of

NO_ERROR is returned as a function result. Otherwise, an error code

is returned.

d. Processing

Get the first token in the input stringLabel. Compare its string of

characters against all the values in the levelMap array whose corresponding valid field is

set to TRUE. If a match is found at a particular array index, then set that portion of the

output binaryLabel that holds the secrecy level to the category field of the same array

index. If no match is found, then return the BLPLBL_BADLEVEL error.

Initialize the set of categories in the output binaryLabel by calling

BlpPolDelCategory [BLP_POL] for each category (0 to MAX_SEC_CATS).

For all other tokens in the input stringLabel, compare their string of

characters against the valid values in the catMap database one at a time. If a match is

found at a particular array index, then call BlpPolAddCategory, passing the category field

of the array index and the output binaryLabel. If no match is found, then return the

BLPLBLJJNDEFCATEGORY error.

If all tokens are processed and no errors have been encountered, return

NO ERROR as the function result.

101

E. BIBA LABEL MODULE (BIB_LBL)

This module is responsible for mapping binary Biba integrity labels into human-

readable integrity labels (and vice versa). This module is dependent upon the BIB_POL

module.

External Entry points:

■ BibLbllnit

- BibLblBinToStr

■ BibLblStrToBin

External types and constants:

#define MAX_LEVEL_STR 10

#defme MAX_CAT_STR 10

/* error codes (decimal) */

#define BIBLBLJERRBASE 1300

#define BIBLBL_NOFILE BIBLBL_ERRBASE

#defme BIBLBL_BADVERSION BIBLBL_ERRBASE+1

#defme BIBLBL_NOVERSION BIBLBL_ERRBASE+2

#define BIBLBL_NOLEVELBITS BIBLBLJERRBASE+3

#define BIBLBL_BADLEVEL BIBLBL_ERRBASE+4

#defme BIBLBLJBADCATEGORY BIBLBL_ERRBASE+5

#define BIBLBL_DUPCATEGOREY BIBLBL_ERRBASE+6

#defme BIBLBL_DUPLEVEL BIBLBL_ERRBASE+7

#defme BIBLBL_UNDEFLEVEL BIBLBL_ERRBASE+8

#defmeBIBLBL UNDEFCATEGORY BIBLBL_ERRBASE+9

102

Internal Databases:

/* Range of valid configuration database versions */

#defme MIN_VERSION 1

#define MAXVERSION 1

/* This structure holds a mapping of an integrity level */

typedef struct {

int valid;

char subLabel[MAX_LEVEL_STR];

} LevelRecordType;

/* This structure holds a mapping of an integrity category */

typedef struct {

int valid;

char subLabel[MAX_CAT_STR];

} CatRecordType;

/* The following comprise the internal representation of the */

/* Biba Label Database */

LevelRecordType levelMap[MAX_INT_LEVELS];

CatRecordType catMap[MAX_INT_CATS];

1. BibLbllnit

This entry point is used to initialize the module during system startup when the

system is still in single-user, single-process mode. Initialization includes opening the

associated Label database, reading the contents into memory in internally static databases

(for quick reference), then closing the file.

103

a. External Interface

void BibLbllnit(void);

b. Inputs

<none>

c. Outputs

<none>

When no errors are encountered, the procedure returns to the caller. If an

error is encountered, an error message is displayed to the system console, and the system

is halted.

d. Processing

Open the Biba Label database file, located at "/security/bibaLaber. If the

file does not exist, display the BIBLBLJNFOFILE error code and halt the system.

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MIN_VERSION) AND (version <= MAX VERSION)

Otherwise, display the BIBLBL_B AD VERSION error code and halt the system. If the

end of file is reached before a non-comment line is encountered, then display the

BIBLABEL NO VERSION error code and halt the system.

104

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Read a line of text from the opened file until another non-comment line is

read. This line contains the level, binary and string fields of the database. If the value of

the level field is "1" (indicating the string is for a level), do the following:

■ Make sure that: 0 < binary < MAXJNTLEVELS [BIB_POL]; if

this relationship is not true, then display the error

BIBLBLJB ADLEVEL code and halt the system.

■ Verify that the length of the string field is less than

MAX_LEVEL_STR. If it is not, then display the

BIBLBL_LONGSTR error code and halt the system.

■ Look at each index of the levelMap array until the valid field of the

array index is set to FALSE. For each valid entry, make sure the level

field of the array index is not the same as the binary value just read

from the file. If a duplicate is found, then return the

BIBLBL_DUPLEVEL error code and halt the system.

■ When an invalid entry is found, set the valid field to TRUE. Copy the

value in the binary field into the level field of the array index. Copy

the string value into the subLabel field of the array index.

Otherwise, if the value of the level field is "0" (indicating the string is for

a category), then do the following:

■ Make sure that: 0 < binary < MAX_INT_CATS [BIB_POL]; if this

relationship is not true, then display the error

BIBLBLJBADCATEGORY code and halt the system.

■ Verify that the length of the string field is less than MAX_C AT_STR.

If it is not, then display the error BIBLBL_LONGSTR code and halt

the system.

105

■ Look at each index of the catMap array until the valid field of the array

index is set to FALSE. For each valid entry, make sure the category

field of the array index is not the same as the binary value just read

from the file. If a duplicate is found, then return the

BIBLBL_DUPCATEGORY error code and halt the system..

■ When an invalid entry is found, set the valid field to TRUE. Copy the

value in the binary field into the category field of the array index.

Copy the string value into the subLabel field of the array index.

Keep reading lines into the database as indicated in the previous

paragraph, until the end-of-file is reached.

Close the open file and return to the caller.

2. BibLblBinToStr

This entry point is used to map a binary Biba integrity label to a human-readable

integrity label.

a. External Interface

int BibLblBinToStr(

const BibLabelType binaryLabel;

char stringLabelQ;

);

b. Inputs

■ binaryLabel

The binary version of a Biba integrity label.

106

c. Outputs

■ stringLabel

The human-readable version of a Biba integrity label.

■ <function result>

If no errors are encountered during processing, then a value of

NO_ERROR is returned as a function result. Otherwise, an error code

is returned.

d. Processing

Get the integrity level by calling BibPolGetLevel [BIBPOL], passing the

input binaryLabel. If the function result is not equal to NO_ERROR, then return that

value as this function's return value. Otherwise, assign the returned integrity level to

intLevel.

Look at each valid field of each index of the levelMap array, comparing

intLevel to the level field of the array index. When a match is found, copy the associated

string form the array index to the start of the output stringLabel. If no match is found,

then return the BIBLBLJJNDEFLEVEL error code as the function result.

For every category bit in the input binaryLabel, (0 to MAX_INT_CATS-

1) do the following:

■ Determine whether the category bit is turned on by calling

BibPolTestCategory [BIB_POL], passing the input binaryLabel. If the

function result is not equal to NO_ERROR, then return this value as

this function's return value.

■ Otherwise, if the bit is on, append a space to the end of the output

stringLabel.

■ Look at each valid field of each index of the catMap array, comparing

the current category bit with the value stored in the category field of

107

the array index. When a match is found, append the associated string

from the array index to the output stringLabel. If no match is found,

then return the BIBLBLJJNDEFCATEGORY error code.

Return NO_ERROR as the function result.

3. BibLblStrToBin

This entry point is used to map a human-readable Biba integrity label to a binary

integrity label.

a. External Interface

• int BibLblStrToBin(

const char stringLabel [];

BibLabelType *binaryLabel;

);

b. Inputs

■ stringLabel

A human-readable version of a Biba integrity label.

c. Outputs

■ binaryLabel

The binary version of a Biba integrity label.

■ <function result>

If no errors are encountered during processing, then a value of

NO_ERROR is returned as a function result. Otherwise, an error code

is returned.

108

d. Processing

Get the first token in the input stringLabel. Compare its string of

characters against all the valid values in the levelMap array whose corresponding valid

field is set to TRUE. If a match is found at a particular array index, then set that portion

of the output binaryLabel that holds the integrity level to the category field of the same

array index. If no match is found, then return the BIBLBL_UNDEFLEVEL error code as

the function result.

Initialize the set of categories in the output binaryLabel by calling

BibPolDelCategory [BIB_POL] for each category (0 to MAX_INT_CATS).

For all other tokens in the input stringLabel, compare their string of

characters against the valid values in the catMap database one at a time. If a match is

found at a particular array index, then call BibPolAddCategory, passing the category field

of the array index and the output binaryLabel. If no match is found, then return the

BIBLBLJJNDEFCATEGORY error.

If all tokens are processed and no errors have been encountered, return

NO_ERROR as the function result.

F. BELL AND LAPADULA RANGE MODULE (BLP_RNG)

This module is responsible for managing the BLP range database, and returning

the currently configured system high and system low secrecy labels for the system. This

module is dependent on the Bell and LaPadula Policy (BPLPOL) and the Bell and

LaPadula Label (BLPJLBL) modules.

109

External Entry points:

■ BlpRnglnit

■ BlpRngSysLow

■ BlpRngSysHigh

External types and constants:

/* error codes (decimal) */

#define BLPRNG_ERRBASE 1400

#defineBLPRNG_NOFILE BLPRNG_ERRBASE

#defme BLPRNG_BADVERSION BLPRNG_ERRBASE+1

#define BLPRNG_NOVERSION BLPRNG_EPvRBASE+2

#define BLPRNG_ NOS YSHIGH BLPRNG_ERRBASE+3

#defme BLPRNG_NOSYSLOW BLPRNG_ERRBASE+4

Internal Databases:

/* Range of valid configuration database versions */

#defme MIN_VERSION 1

#define MAX_VERSION 1

/* The following comprise the Internal representation of the */

/* BLP Range Database */

BlpLabelType sysLow;

BlpLabelType sysHigh;

1. BlpRnglnit

This entry point is used to initialize the BLP_RNG module when the system is

still in single-user, single-process mode. It does this by reading a configuration file that

stores the configured system high and system low secrecy labels for the BLP policy. It

converts these human-readable labels into their binary form by using the BLP_LBL

110

module, and stores the result internally for future reference. If an error occurs during

initialization, an error code is displayed and the system is halted.

a. External Interface

void BlpRnglnit(void);

b. Inputs

■ <none>

c. Outputs

■ <none>

d. Processing

Open the BLP Range database file, located at "/security/blpRange". If the

file does not exist, display the error code BLPRNG_NOFILE and halt the system.

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MIN_VERSION) AND (version <= MAX_VERSION).

Otherwise, display the BLPRNGJBADVERSION error code and halt the system. If the

end of file is reached before a non-comment line is encountered, then display the

BLPRNG_NOVERSION error code and halt the system.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Ill

Read a line of text from the opened file until another non-comment line is

read. This line contains the sysHigh field of the database. Assign this string to

sysHighStr. If the end of file is reached before such a line is encountered, then display

the BLPRNG_NOS YSHIGH error code and halt the system.

Read a line of text from the opened file until another non-comment line is

read. This line contains the sysLow field of the database. Assign this string to

sysLowStr. If the end of file is reached before such a line is encountered, then display

the BLPRNG_NOSYSLOW error code and halt the system.

Call BlpLblStrToBin [BLP_LBL], passing in sysHighStr, and assign the

returned Policy Label to the sysHigh module database. If BlpLblStrToBin returns a

function result other than NO_ERROR, then display the returned error code and halt the

system.

Call BlpLblStrToBin, passing in sysLowStr, and assign the returned

Policy Label to the sysLow module database. If BlpLblStrToBin returns a function result

other than NO_ERROR, then display the returned error code and halt the system.

Otherwise, return to the caller.

Close the open file and return to the caller.

2. BlpRngSysLow

This entry point is used to return the binary system low BLP secrecy label.

a. External Interface

void BlpRngSysLow(BlpLabelType *systemLow);

112

b. Inputs

■ <none>

c. Outputs

■ systemLow

This is the currently configured binary system-low BLP secrecy label.

d. Processing

Copy the secrecy label stored in the sysLow database to the output

systemLow, then return to the caller.

3. BlpRngSysHigh

This entry point is used to return the binary system high BLP secrecy label.

a. External Interface

void BlpRngSysHigh(BlpLabelType *systemHigh);

b. Inputs

■ <none>

c. Outputs

■ systemHigh

This is the currently configured binary system high BLP secrecy label.

113

d. Processing

Copy the secrecy label stored in the sysHigh database to the output

systemljigh, then return to the caller.

G. BIBA RANGE MODULE (BIB_RNG)

This module is responsible for managing the Biba range database, and returning

the currently configured system high and system low integrity labels for the system. This

module is dependent on the Biba Policy (BIBS_POL) and the Biba Label (BIBA_LBL)

modules.

External Entry points:

■ BibRnglnit

■ BibRngSysLow

■ BibRngSysHigh

External types and constants:

/* error codes (decimal) */

#defme BIBRNG_ERRBASE 1500

#define BIBRNG_NOFILE BIBRNG_ERRBASE

#defme BIBRNG_BADVERSION BIBRNG_ERRBASE+1

#define BIBRNG_NOVERSION BIBRNG_ERRBASE+2

#define BIBRNG_ NOSYSHIGH BIBRNG_ERRBASE+3

#define BIBRNG_NOSYSLOW BIBRNG_ERRBASE+4

Internal Databases:

/* Range of valid configuration database versions */

#define MIN_VERSION 1

#defineMAX VERSION 1

114

/* The following comprise the internal representation of the */

/* Biba Range Database */

BibLabelType sysLow;

BibLabelType sysHigh;

1. BibRnglnit

This entry point is used to initialize the BIBA_RNG module when the system is

still in single-user, single-process mode. It does this by reading a configuration file that

stores the configured system high and system low integrity labels for the Biba policy. It

converts these human-readable labels into their binary form by using the BIBAJLBL

module, and stores the result internally for future reference. If an error occurs during

initialization, an error code is displayed and the system is halted.

a. External Interface

void BibRnglnit(void)

b. Inputs

■ <none>

c. Outputs

■ <none>

d. Processing

Open the Biba Range database file, located at "/security/bibaRange". If

the file does not exist, display the BIB ARNGNOFILE error code and halt the system.

115

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MAX VERSION) AND (version <= MAX_VERSION).

Otherwise, display the BIB ARNG_B AD VERSION error code and halt the system. If the

end of file is reached before a non-comment line is encountered, then display the

BIBRNG_NOVERSION error code and halt the system.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Read a line of text from the opened file until another non-comment line is

read. This line contains the sysHigh field of the database. Assign this string to

sysHighStr. If the end of file is reached before such a line is encountered, then display

the BIBRNG_NOSYSHIGH error code and halt the system.

Read a line of text from the opened file until another non-comment line is

read. This line contains the sysLow field of the database. Assign this string to

sysLowStr. If the end of file is reached before such a line is encountered, then display

the BIBRNG_NOSYSLOW error code and halt the system.

Call BibLblStrToBin [BIBA_LBL], passing in sysHighStr, and assign the

returned Policy Label to the sysHigh database. If BibLblStrToBin returns a function

result other than NO_ERROR, then display the returned error code and halt the system.

Call BibLblStrToBin, passing in sysLowStr, and assign the returned

Policy Label to the sysLow database. If BibLblStrToBin returns a function result other

than NO_ERROR, then display the returned error code and halt the system. Otherwise,

return to the caller.

116

Close the opened file and return to the caller.

2. BibRngSysLow

This entry point is used to return the binary system low Biba integrity label.

a. External Interface

void BibRngSysLow(BibLabelType *systemLow);

b. Inputs

■ <none>

c. Outputs

■ systemLow

This is the currently configured binary system low Biba integrity label.

d. Processing

Copy the integrity label stored in the systemLow database to the output

sysLow, then return to the caller.

3. BibRngSysHigh

This entry point is used to return the binary system high Biba integrity label.

a. External Interface

void BibRngSysHigh(BibLabelType *systemHigh);

117

b. Inputs

■ <none>

c. Outputs

■ systemHigh

This is the currently configured binary system high Biba integrity

label.

d. Processing

Copy the integrity label stored in the sysHigh database to the output

systemHigh, then return to the caller.

H. BELL AND LAPADULA CLEARANCE MODULE (BLP_CLR)

This module is responsible for managing the BLP clearance database, and for

returning user clearance information upon request. There is no initialization point in this

module because the user database could potentially be quite large, and the large amount

of memory used by the kernel to keep an internal copy of the database would be an

unwise use of resources. In addition, it is expected that clearance information would not

be needed very often, and the design should not require the rebooting of the system just

to accept a new user. Therefore, the configuration database is opened and searched upon

each invocation of the entry point. This module is dependent on the BLP Policy

(BLP_POL) and the BLP Label (BLP_LBL) modules.

External Entry points:

■ BlpClrGetClearance

118

External types and constants:

/* error codes (decimal) */

#define BLPCLRJERRBASE

#define BLPCLRJSTOFILE

#define BLPCLR_BAD VERSION

#define BLPCLR_NO VERSION

#defme BLPCLR_NOTFOUND

#define BLPCLR BADCONFIG

1600

BLPCLR_ERRBASE+0

BLPCLR_ERRBASE+1

BLPCLR_ERRBASE+2

BLPCLR_ERRBASE+3

BLPCLR ERRBASE+4

Internal Databases:

/* Range of valid configuration database versions */

#define MIN_VERSION 1

#define MAX_VERSION 1

1. BIpClrGetClearance

This entry point is used to return the BLP clearance information for a particular

user. It does this by opening and searching the BLP clearance database upon each

request.

a. External Interface

int BlpClrGetClearance(

_uid_t

BlpLabelType

BlpLabelType

BlpLabelType

);

uid;

*minSession;

*clearance;

*defaultSession

119

b. Inputs

■ uid

This is the User ID for the user in question.

c. Outputs

■ MinSession

The lowest session level that a user can negotiate, with respect to the

BLP policy.

■ Clearance

The highest session level that a user can negotiate, with respect to the

BLP policy.

■ defaultSession

The default session level assigned to a user, with respect to the BLP

policy.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Open the BLP Clearance database file, located at "/security/blpClearance".

If the file does not exist, display the error code BLPCLR_NOFILE.

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MIN_VERSION) AND (version <= MAX VERSION).

Otherwise, display the error code BLPCLR_B AD VERSION. If the end of file is reached

120

before a non-comment line is encountered, then display the BLPCLRNO VERSION

error code.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Read a line of text from the opened file until another non-comment line is

read. Convert the first token of the line to a number and compare it to the input uid. If

they are not equal then read another line. Continue reading lines until the uid's match. If

the file is read and no match is made, then return the BLPCLR_NOTFOUND error code.

If a line is found where the two uid values match, then assign the three

remaining tokens to the internal minSessionStr, cleranceStr and defaultSessionStr,

respectively.

Convert minSessionStr to its corresponding binary value by calling

BlpLblStrToBin [BLPJLBL]. If BlpLblStrToBin returns a function result other than

NO_ERROR, then return it as this function's error code. Otherwise, assign the returned

secrecy label to minSessionBin.

Convert clearanceStr to its corresponding binary value by calling

BlpLblStrToBin. If BlpLblStrToBin returns a function result other than NO_ERROR,

then return it as this function's error code. Otherwise, assign the returned secrecy label to

clearanceBin.

Convert defaultSessionStr to its corresponding binary value by calling

BlpLblStrToBin. If BlpLblStrToBin returns a function result other than NO_ERROR,

then return it as this function's error code. Otherwise, assign the returned secrecy label to

defaultSessionBin.

121

Make sure that the default session level dominates the minimum session

level by calling BlpPolDominates [BLP_POL], passing in defaultSessionBin as the first

input and minSessionBin as the second argument. If a function result other than

NO_ERROR is returned, then return it as this function's error code. Otherwise, if

defaultSessionBin does NOT dominate minSessionBin, return the

BLPCLR_BADCONFIG error code.

Make sure the user's clearance dominates the default session level by

calling BlpPolDominates, passing in clearanceBin as the first input and

defaultSessionBin as the second argument. If a function result other than NO_ERROR is

returned, then return it as this function's error code. Otherwise, if clearanceBin does

NOT dominate defaultSessionBin, return the BLPCLR_BADCONFIG error code.

Copy minSessionBin to the output minSession, and copy clearanceBin to

the output clearance, and copy defaultSessionBin to the output defaultSession.

Close the open file, then return the value of NO_ERROR as this function's

return value.

I. BIBA CLEARANCE MODULE (BIB_CLR)

This module is responsible for managing the Biba clearance database, and for

returning user clearance information upon request. There is no initialization point in this

module because the user database could potentially be quite large, and the large amount

of memory used by the kernel to keep an internal copy of the database would be an

unwise use of resources. In addition, it is expected that clearance information would not

be needed very often, and the design should not require the rebooting of the system just

to accept a new user. Therefore, the configuration database is opened and searched upon

each invocation of the entry point. This module is dependent on the Biba Policy

(BIBA_POL) and the Biba Label (BIBAJLBL) modules.

122

External Entry points:

■ BibaClrGetClearance

External types and constants:

/* error codes (decimal) */

#defme BIBCLR_ERRBASE 1700

#defme BIBCLR_NOFILE BIBLCR_ERRBASE

#defme BIB CLR_B AD VERSION BIBCLR_ERRBASE+1

#defme BIBCLR_NOVERSION BIBCLR_ERRBASE+2

#define BIBCLR_NOTFOUND BIBCLR_ERRBASE+3

#defme BIBCLR_BADCONFIG BIBCLR_ERRBASE+4

Internal Databases:

/* Range of valid configuration database versions */

#define MIN_VERSION 1

#defme MAXVERSION 1

1. BibCIrGetClearance

This entry point is used to return the Biba clearance information for a particular

user. It does this by opening and searching the Biba clearance database upon each

request.

a. External Interface

int BibClrGetClearance(

 uid_t uid;

BibLabelType *minSession;

BibLabelType *clearance;

BibLabelType *defaultSession

);

123

b. Inputs

■ uid

This is the User ID for the user in question.

c. Outputs

■ MinSession

The lowest session level that a user can negotiate, with respect to the

Biba policy.

■ Clearance

The highest session level that a user can negotiate, with respect to the

Biba policy.

■ defaultSession

The default session level assigned to a user, with respect to the Biba

policy.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Open the Biba Clearance database file, located at

"/security/bibaClearance". If the file does not exist, display the error code

BIBCLR_NOFILE.

Read a line of text from the opened file until a line is read that does not

contain a '#' as the first character in the line (which represents a comment). This line

contains the version number. If the following condition is true, then continue:

(version >= MIN_VERSION) AND (version <= MAX_VERSION).

Otherwise, display the error code BIBCLR_B AD VERSION. If the end of file is reached

124

before a non-comment line is encountered, then display the BIBCLRNO VERSION

error code.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Read a line of text from the opened file until another non-comment line is

read. Convert the first token of the line to a number and compare it to the input uid. If

the are not equal then read another line. Continue reading lines until the uid's match. If

the file is read and no match is made, then return the BIBCLRNOTFOUND error code.

If a line is found where the two uid values match, then assign the three

remaining tokens to the internal minSessionStr, cleranceStr and defaultSessionStr,

respectively.

Convert the minSessionStr to its corresponding binary value by calling

BibLblStrToBin [BIB_LBL]. If BibLblStrToBin returns a function result other than

NO_ERROR, then return it as this function's error code. Otherwise, assign the returned

integrity label to minSessionBin.

Convert clearanceStr into its corresponding binary value by calling

BibLblStrToBin. If BibLblStrToBin returns a function result other than NO_ERROR,

then return it as this function's error code. Otherwise, assign the returned integrity label

to clearanceBin.

Convert defaultSessionStr into its corresponding binary value by calling

BibLblStrToBin. If BibLblStrToBin returns a function result other than NO_ERROR,

then return it as this function's error code. Otherwise, assign the returned integrity label

to defaultSessionBin.

125

Make sure the default session label dominates the minimum session label

by calling BibPolDominates [BIB_POL], passing in defaultSessionBin as the first input

and minSessionBin as the second argument. If a function result other than NO_ERROR

is returned, then return it as this function's error code. Otherwise, if defaultSessionBin

does NOT dominate minSessionBin, return the BIBCLRJ3ADCONFIG error code.

Make sure the user clearance dominates the default session label by

calling BibPolDominates, passing in clearanceBin as the first input and

defaultSessionBin as the second argument. If a function result othern than NOERROR,

then return it as this function's error code. Otherwise, if clearanceBin does NOT

dominate defaultSessionBin, return the BIBCLR_BADCONFIG error code.

Copy minSessionBin to the output minSession, and copy clearanceBin to

the output clearance, and copy defaultSessionBin to the output defaultSession.

Close the open file, then return the value of NO_ERROR as this function's

return value.

J. LABEL MANAGER (LBL_MGR)

This module is responsible for mapping human-readable Policy Labels into their

binary counterparts, and vice versa. It is also responsible for extracting and setting the

sub-labels in a binary Policy Label. This module is dependent on the modules in both the

Label Layer and Policy Layer.

External Entry points:

■ LblMgrlnitLabel

■ LblMgrBinToStr

■ LblMgrStrToBin

■ LblMgrGetBlp

■ LblMgrSetBlp

126

■ LblMgrGetBiba

■ LblMgrSetBiba

External types and constants:

typedef Bits64 PolicyLabelType;

#define MAX_HRL_STR

#define DELIMETER

256

/* error codes */

#defme LBLMGRJERRBASE 1800

#define LBLMGR_BADSTRING LBLMGR_ERRBASE

#define LBLMGR_BADLABEL LBLMGR_ERRBASE+1

Internal Databases:

/* binary policy label version information */

#defme MIN_VERSION 1

#defme MAX_VERSION 15

#define CUR_VERSION 1

#defmeNUM_VERSION_BITS 4

1. LblMgrlnitLabel

This entry point is used to initialize a Policy Label in two ways: 1) properly set

the version field to avoid LBLMGR_BADLABEL errors; 2) getting initialized secrecy

and integrity labels and storing them in the Policy Label.

a. External Interface

void LblMgrInitLabel(PolicyLabelType *binaryLabel);

127

b. Inputs

■ <none>

c. Outputs

■ binaryLabel

An initialized binary Policy Label.

d. Processing

Set all the bits in the output binaryLabel to zero.

Set the version field of the output label to the value of CUR_VERSION.

Call BlpPolInitLabel [BLP_POL] to initialize a secrecy label, then call

LblMgrSetBlp to copy it into the output binaryLabel.

Call BibPolInitLabel [BIB_POL] to initialize an integrity label, then call

LblMgrSetBiba to copy it into the output binaryLabel.

2. LblMgrlsValid

This entry point is used to test whether a binary Policy Label is valid or not.

a. External Interface

Boolean LblMgrIsValid(const PolicyLabelType binaryLabel);

128

b. Inputs

■ binaryLabel

The binary Policy Label to test for validity.

c. Outputs

■ <result>

A value of VALID is returned if the input binaryLabel is valid.

Otherwise, a value of INVALID is returned.

d. Processing

Copy the value from the version field in the input binaryLabel and assign it to

curVersion. Test the relationship:

(curVersion >= MIN_VERSION) AND (curVersion <= CURVERSION). If

the relationship is TRUE, then return VALID as the function result. Otherwise, return

INVALID.

3. LblMgrBinToStr

This entry point is used to convert a binary Policy Label to its human-readable

form.

a. External Interface

int LblMgrBinToStr(

const PolicyLabelType binaryLabel,

char stringLabel[]

);

129

b. Inputs

■ binaryLabel

The binary Policy Label to convert to a human-readable format.

c. Outputs

■ stringLabel

The human-readable version of the input binaryLabel.

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

Copy the value from the version field in the input binaryLabel and assign

it to curVersion. If the following condition is true, then continue:

(curVersion >= MIN_VERSION) AND (curVersion <= CURVERSION).

Otherwise, return the LBLMBR_BADLABEL error code as this function's return value.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Initialize the output stringLabel so it has a length of zero.

■ BLP:

Call LblMgrGetBlp to copy the BLP secrecy label from the input

binaryLabel. Assign the output to secrecyBin.

130

Call BlpLblBinToStr to convert the secrecy label into a readable

format, passing secrecyBin as input, and assigning the output to

secrecyStr. If an error is returned, return the error as this function's

return value.

If the following relationship is TRUE, then return the

LBLMGR_BADSTRING error code as this function's return value:

length(stringLabel) + length(secrecyStr) > MAX_HRL_STR

Copy the secrecyStr to the end of the output stringLabel, followed by a

space, the DELIMETER, then another space.

■ Biba:

Call LblMgrGetBiba to copy the Biba integrity label from the input

binaryLabel. Assign the output to integrityBin.

Call BibLblBinToStr to convert the integrity label into a readable

format, passing integrityBin as input, and assigning the output to

integrity Str. If an error is returned, return the error as this function's

return value.

Copy the integrity Str to the end of the output stringLabel, followed by

a null terminator to mark the end of the string.

Return the value of NOERROR as the function result.

4. LblMgrStrToBin

This entry point is used to convert a human-readable Policy Label to a binary

Policy Label.

131

a. External Interface

int LblMgrStrToBin(

const char stringLabelQ,

PolicyLabelType *binaryLabel

);

b. Inputs

■ stringLabel

The human-readable version of a Policy Label.

c. Outputs

■ binaryLabel

The binary version of the input stringLabel.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value is an error.

d. Processing

If the following relationship is TRUE, return the

LBLMGR_BADSTRING as this functions return value:

Length(stringLabel) > MAX_HRL_STR

Call LblMgrlnitLabel to initialize the output binaryLabel.

132

■ BLP:

Parse the input stringLabel to extract the human-readable BLP secrecy

label, using the defined DELIMETER to differentiate the two policy

strings. Assign the parsed string to secrecyString.

Convert secrecyString to its corresponding binary value by calling

BlpLblStrToBin [BLPLBL], using secrecyString as the input, and

assigning the output to secrecyBinary. If an error is returned, return

the error code as this function's return value.

Copy the secrecy label to the proper spot in the output binaryLabel by

calling LblMgrSetBlp, passing in secrecyBinary as the input, and

assigning the output to the output binaryLabel.

■ Biba:

Parse the input stringLabel to extract the human-readable Biba

integrity label, using the defined DELIMETER to differentiate the two

policy strings. Assign the parsed string to integrityString.

Convert integrityString to its corresponding binary value by calling

BibLblStrToBin [BIBLBL], using integrityString as the input, and

assigning the output to integrityBinary. If an error is returned, return

the error code as this function's return value.

Copy the integrity label to the proper spot in the output binaryLabel by

calling LblMgrSetBiba, passing in integrityBinary as the input, and

assigning the output to the output binaryLabel.

Return the value of NO ERROR as the function result.

133

5. LbIMgrGetBlp

This entry point is used to copy the BLP portion of a Policy Label and return it to

the caller.

a. External Interface

int LblMgrGetBlp(

const PolicyLabelType policyLabel,

BlpLabelType *secrecyLabel

);

b. Inputs

■ policyLabel

A binary Policy Label.

c. Outputs

■ secrecyLabel

The BLP secrecy portion of the input Policy Label.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Copy the version field from the input policyLabel to lbl Version. If the

following condition is true, then continue:

(lblVersion >= MINVERSION) AND (IblVersion <= CUR_VERSION).

Otherwise, return the LBLMGR_BADLABEL error code as the function's return value.

134

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Copy the proper bits from the input policyLabel to the output

secrecyLabel. The BLP secrecy label is just after the version bits. The number of bits to

extract is equal to the number of bits in a secrecy label.

Return the value of NOERROR as the function's return value.

6. LblMgrGetBiba

This entry point is used to copy the Biba integrity portion of a Policy Label and

return it to the caller.

a. External Interface

int LblMgrGetBiba(

const PolicyLabelType

BibLabelType

);

policyLabel,

*integrityLabel

b. Inputs

■ policyLabel

A binary Policy Label.

c. Outputs

■ integrityLabel

The Biba integrity portion of the input Policy Label.

135

■ <function result>

The success or failure of the operation. A value of NO_ERROR

indicates a success, while any other value indicates an error.

d. Processing

Copy the version field from the input policyLabel to lbl Version. If the

following condition is true, then continue:

(lblVersion >= MIN_VERSION) AND (lblVersion <= CURVERSION).

Otherwise, return the LBLMGR_BADLABEL error code as the function's return value.

NOTE: the initial design only permits a version number with the value of one. As

modifications are made and this field has more than one valid value, the processing

below will become dependent on the version number.

Copy the proper bits from the input policyLabel to the output

integrityLabel. The Biba integrity label is just after the BLP label. The number of bits to

extract is equal to the number of bits in an integrity label.

Return the value of NO_ERROR as the function's return value.

7. LblMgrSetBlp

This entry point is used to Set the BLP secrecy portion of a Policy Label.

a. External Interface

void LblMgrSetBlp(

const BlpLabelType secrecyLabel,

PolicyLabelType *policyLabel

);

136

b. Inputs

■ secrecyLabel

The secrecy label to copy into the Policy Label.

c. Outputs

■ policyLabel

A Policy Label with the input secrecy label properly installed.

d. Processing

Copy the version field from the input policyLabel to lbl Version. If the

folio wing condition is true, then continue:

(lblVersion >= MIN_VERSION) AND (lblVersion <= CUR_VERSION).

Otherwise, return the LBLMGR_BADLABEL error code as the function's return value.

Copy the input secrecyLabel to the proper location in the output

policyLabel. The BLP secrecy label is just after the version bits. The number of bits to

extract is equal to the number of bits in a secrecy label.

8. LblMgrSetBiba

This entry point is used to Set the Biba integrity portion of a Policy Label.

a. External Interface

void LblMgrSetBiba(

const BibLabelType integrityLabel,

PolicyLabelType *policyLabel

);

137

b. Inputs

■ integrityLabel

The integrity label to copy into the Policy Label.

c. Outputs

■ policyLabel

The Policy Label to use when inserting the input integrityLabel.

d. Processing

Copy the version field from the input policyLabel to lblVersion. If the

following condition is true, then continue:

(lblVersion >= MIN VERSION) AND (lblVersion <= CUR_VERSION).

Otherwise, return the LBLMGR_BADLABEL error code as the function's return value.

Copy the input integrityLabel to the proper location in the output

policyLabel. The Biba integrity label is stored just after the BLP label. The number of

bits to extract is equal to the number of bits in an integrity label.

K. CLEARANCE MANAGER (CLR_MGR)

This module is responsible for returning user restrictions, with respect to session

levels, in the form of Policy Labels. These labels are constructed using individual pieces

returned by the modules in the Clearance Layer, then combining them into a binary

Policy Label using the Label Manager. This module is also dependent on the modules in

the Policy Layer.

External Entry points:

■ ClrMgrGetClearance

138

External types and constants:

/* error codes (decimal)*/

#defme CLRMGR NOUSER 1900

1. CIrMgrGetClearance

This entry point is used to return clearance information about a particular user.

a. External Interface

int ClrMgrGetClearance(

const uid_t

PolicyLabelType

PolicyLabelType

PolicyLabelType

);

uid,

*minSession,

*clearance,

*defaultSession

b. Inputs

■ uid

The ID of the user in question.

c. Outputs

■ minSession

The lowest session level the user can specify.

■ clearance

The highest session level the user can specify.

■ defaultSession

The default session level for the user.

139

■ <function result>

The success or failure of the operation. A value of NOJERROR

indicates a success, while any other value indicates an error.

d. Processing

Initialize the output minSession, clearance and default Session by calling

LblMgrlnitLabel [LBL_MGR].

Call BlpClrGetClearance [BLP_CLR] to get the desired clearance

information with respect to the BLP policy; pass the input uid as the function input, and

assign the minimum session level, clearance, and default session level to blpSession,

blpClearance and blpDefault, respectively. If an error is returned, then return the error as

this function's error code.

Call BlpLblRange [BLP_LBL] to find out where the BLP secrecy label is

stored in a Policy Label. Using this information, call LblMgrSetBlp [LBL_MGR] three

times, passing the inputs and outputs as shown below:

■ First call: pass blpSession and the output minSession.

■ Second call: pass blpClearance and the output clearance.

■ Third call: pass blpDefault and the output defaultSession.

Call BibClrGetClearance [BIB_CLR] to get the desired clearance

information with respect to the Biba policy; pass the uid as the function input, and assign

the minimum integrity level, clearance, and default session level to bibaSession,

bibaClearance and bibaDefault, respectively. If an error is returned, then return the error

as this function's error code.

Call BibLblRange [BIBJLBL] to find out where the Biba integrity label is

stored in a Policy Label. Using this information, call LblMgrSetBiba [LBL_MGR] three

times, passing the inputs and outputs as shown below:

140

■ First call: pass bibaSession and the output minSession.

■ Second call: pass bibaClearance and the output clearance.

■ Third call: pass bibaDefault and the output defaultSession.

Return the value of NOERROR as the function result.

L. RANGE MANAGER (RNG_MGR)

This module is responsible for returning the currently configured system high and

system low Policy Labels. These labels are constructed using individual pieces returned

by the modules in the Range Layer, then combining them into a binary Policy Label by

using the Label Manager. This module is also dependent on the modules in the Policy

Layer.

External Entry points:

■ RngMgrGetRange

1. RngMgrGetRange

This entry point is used to obtain the currently configured system high and system

binary Policy Labels.

a. External Interface

void RngMgrGetRange(

PolicyLabelType

PolicyLabelType

);

*systemLow,

*systemHigh

141

b. Inputs

■ <none>

c. Outputs

■ systemLow

The system low Policy Label in binary format.

■ systemHigh

The system high Policy Label in binary format.

d. Processing

Initialize the output systemLow and systemHigh by calling

LblMgrlnitLabel [LBL_MGR].

Call BlpRngSysLow [BLP_RNG] to get the system low information for

the BLP policy, and assign the output to blpLow. Call BlpRngSysHigh [BLP_RNG] to

get the system high information for the BLP policy, and assign the output to blpHigh.

Call BibRngSysLow [BIB_RNG] to get the system low information for

the Biba policy, and assign the output to bibaLow. Call BibRngSysHigh [BIBA_RNG]

to get the system high information for the Biba policy, and assign the output to bibaHigh.

Call BlpLblRange [BLPJLBL] to find out where the BLP secrecy label is

stored in a Policy Label. Using this information, call LblMgrSetBlp [LBL_MGR] two

times, passing the inputs and outputs as shown below:

■ First call: pass blpLow and the output systemLow.

■ Second call: pass blpHigh and the output systemHigh.

142

Call BibLblRange [BIBJLBL] to find out where the Biba integrity label is

stored in a Policy Label. Using this information, call LblMgrSetBiba [LBL_MGR] two

times, passing the inputs and outputs as shown below:

■ First call: pass bibaLow and the output systemLow.

■ Second call: pass bibaHigh and the output systemHigh.

M. META-POLICY MANAGER (POL_MGR)

This module is responsible for calling all of the modules in the Policy Layer to

determine the dominance relationship between two binary Policy Labels, and to

determine whether a given type of access is allowed.

External Entry points:

■ PolMgrDominates

■ PolMgrRead

■ PolMgrWrite

1. PolMgrDominates

This entry point is used to test whether one Policy Label dominates another.

a. External Interface

int PolMgrDominates(

const PolicyLabelType highLabel,

const PolicyLabelType lowLabel,

Boolean *dominates

);

143

b. Inputs

■ highLabel

The Policy Label to use when testing for dominance.

■ lowLabel

The Policy Label to use as the dominated label.

c. Outputs

■ dominates

TRUE indicates that highLabel dominates lowLabel. FALSE indicates

that highLabel does not dominate lowLabel. It cannot be assumed that

lowLabel dominates highLabel if FALSE is returned.

■ <function result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Call LblMgrGetBlp [LBLMGR] to extract the BLP secrecy label portion

of the input lowLabel, and assign the output to blpLow. If an error is returned, return that

error as this function's return value.

Call LblMgrGetBlp to extract the BLP secrecy label portion of the input

highLabel, and assign the output to blpHigh. If an error is returned, return that error as

this function's return value.

Call LblMgrGetBiba [LBL_MGR] to extract the Biba integrity label

portion of the input systemLow, and assign the output to bibaLow. If an error is returned,

return the error as this function's return value.

144

Call LblMgrGetBiba to extract the Biba integrity label portion of the input

systemHigh, and assign the output to bibaHigh. If an error is returned, return that error as

this function's return value.

Call BlpPolDominates [BLP_POL], passing blpHigh and blpLow, and

assign the output to blpLowDom. If an error is returned, return the error code as this

function's return value.

Call BibPolDominates [BIB_POL], passing bibaHigh and bibaLow, and

assign the output to bibaLowDom. If an error is returned, return the error code as this

function's return value.

If both blpLowDom and bibaLowDom are set to TRUE, then the input

highLabel does dominate the input lowLabel, so set the output dominates to TRUE.

Otherwise, set it to FALSE.

Return the value of NOERROR as this function's return value.

2. PoIMgrRead

This entry point is used to determine whether the associated subject should be

allowed to read the associated object, given the subject and object Policy Labels. The

operation is allowed if the input subjectLabel dominates the input objectLabel.

a. External Interface

int PolMgrRead(

const PolicyLabelType subjectLabel,

const PolicyLabelType objectLabel,

Boolean *access

);

145

b. Inputs

■ subjectLabel

The binary Policy Label representing the level of the subject that

wants to read the object.

■ objectLabel

The binary Policy Label representing the level of the object to be read.

c. Outputs

■ access

A value of ALLOWED is returned if the subject associated with the

input subjectLabel is allowed to read the object associated with the

input objectLabel. Otherwise, a value of DISALLOWED is returned.

■ <runction result>

The success or failure of the operation. A value of NOERROR

indicates a success, while any other value indicates an error.

d. Processing

Call PolMgrDominates, passing the input subjectLabel as the HIGH label,

and the input objectLabel as the LOW label. If an error is returned, return the error code

as this function's return value. If subjectLabel dominates objectLabel, then set the output

access to ALLOWED. Otherwise, set the output access to DISALLOWED.

Return the value NO_ERROR as this function's return value.

3. PolMgrWrite

This entry point is used to determine whether the associated subject should be

allowed to write the associated object, given the subject and object Policy Labels. The

146

only way that write permission will be allowed is if the subject and object labels are

equal, viz., the two labels dominate each other.

a. External Interface

int PolMgrWrite(

const PolicyLabelType subjectLabel,

const PolicyLabelType objectLabel,

Boolean *access

); •

b. Inputs

■ subjectLabel

The binary Policy Label representing the level of the subject that

wants to write the object.

■ objectLabel

The binary Policy Label representing the level of the object to be

modified.

c. Outputs

■ access

A value of ALLOWED is returned if the subject associated with the

input subjectLabel is allowed to write the object associated with the

input objectLabel. Otherwise, a value of DISALLOWED is returned.

d. Processing

NOTE: this function does not just perform a bit-wise AND operation on

the two labels to determine whether they are equal because the labels could be invalid.

147

By using PolMgrDominates, the labels are properly verified. If the two labels dominate

each other, then they are equal.

Call PolMgrDominates, passing the input subjectLabel as the HIGH label,

and the input objectLabel as the LOW label. Assign the output to dominatel. If an error

is returned, return the error code as this function's return value.

Call PolMgrDominates, passing the input objectLabel as the HIGH label,

and the input subjectLabel as the LOW label. Assign the output to dominate2. If an error

is returned, return the error code as this function's return value.

If dominatel and dominate2 are both TRUE, then set the output access to

ALLOWED. Otherwise, set the output access to DISALLOWED.

Return the value of NO ERROR as this function's return value.

148

APPENDIX D. SOURCE CODE

This appendix contains the source code for the new modules that were

implemented for the Policy Enhanced Linux. Each section is devoted to a module, with

each subsection corresponding to individual source and header files.

A. POLICY ENHANCED LINUX COMMON TYPES (PELJTYP)

1. Peltyp.h

//
// File: peltyp.h
// _
// Description: This file contains types and constants that are common
to
// all Policy Enhanced Linux (PEL) modules.
//
// Created: 29-Jul-99 (P. Clark)
//
// Modifications:
//

#ifndef _PELTYP_H
#define _PELTYP_H

#define MAX_TRUSTED_UID 99
#define MAX_TRUSTED_PID 300

#define NO_ERROR 0
#define TRUE 1
#define FALSE 0
#define ALLOWED TRUE
#define DISALLOWED FALSE
#define VALID TRUE
#define INVALID FALSE

typedef unsigned short Bitsl6;
typedef unsigned long long Bits64;
typedef unsigned char Boolean;

#endif

// EOF for peltyp.h

149

B. BELL AND LAPADULA POLICY (BLP_POL)

1. blppol.h

//
// File: bibpol.h
//
// Description: This file contains the external interface to the Biba
// Policy Module (BIB_POL).
//
// Created: 04-Aug-99 (P. Clark)
//
// Modifications:
//

#ifndef _BIBPOL_H_
#define _BIBPOL_H_

#include <pel/peltyp.h>

#define MAX_INT_LEVELS 16
#define MAX_INT_CATS 12

typedef Bitsl6 BibLabelType;
typedef Bitsl6 BibLevelType;
typedef Bitsl6 BibCatType;

extern int BibPolSetLevel(const BibLevelType intLevel,
BibLabelType *intLabel);

extern int BibPolGetLevel(const BibLabelType intLabel,
BibLevelType *intLevel);

extern int BibPolAddCategory(const BibCatType category,
BibLabelType *intLabel);

extern int BibPolDelCategory(const BibCatType category,
BibLabelType *intLabel);

extern int BibPolTestCategory(const BibLabelType intLabel,
const BibCatType category,

Boolean *inTheSet);

extern int BibPolDominates(const BibLabelType highLabel,
const BibLabelType lowLabel,

int *dominates);

extern int BibPolRead(const BibLabelType subjectLabel,
const BibLabelType objectLabel,

int *allowed);

150

extern int BibPolWrite(const BibLabelType subjectLabel,
const BibLabelType objectLabel,

int *allowed);

// Error codes returned by this module
//
#define BIBPOL_ERRBASE 1100
#define BIBPOL_BADLEVEL BIBPOL_ERRBASE
#define BIBPOL BADCATEGORY BIBPOL ERRBASE+1

#endif

// EOF for bibpol.h

2. blppol_getset.c

//
// File: blppol_getset.c
//
// Description: This is the implementation file for the following
// external entry points of the Bell and LaPadula Policy Module
// (BLP_POL):
// 1. BlpPolInitLabel
// 2. BlpPolSetLevel
// 3. BlpPolGetLevel
// 4. BlpPolAddCategory
// 5. BlpPolDelCategory
// 6. BlpPolTestCategory
//
// BLP binary label format:
//
// + + +

// I categories | level |
// + + +
// 15 4 3 0 <-- bits
//
// A label has a level field and a category field. There are 12
// possible categories. If a bit in the category field is on (1),
// then that category is in the set of categories stored by label.
// Otherwise, the bit is off (0) and the corresponding category
// is not in the set.
//
// Created: 29-Jul-99 (P. Clark)
//
// Modifications:
//

#include <pel/blppol.h>

151

#define NUM_LEVEL_BITS 4
#define ERASE_LEVEL OxfffO
#define ERASE_CATS OxOOOf
#define LOW LEVEL 0

//

// Function:
// BlpPolInitLabel
// Inputs:
// <none>
// Outputs:
// secLabel The initialized BLP secrecy label.
// <result> The success or failure of the operation. A value of
// zero indicates a success, while any other value
// indicates an error.
// Description:
// This entry point is used to initialize a BLP secrecy label to the
// lowest level, with no categories (lowest secrecy).
//
int BlpPolInitLabel(BlpLabelType *secLabel)

{
int success = NO_ERROR;
BlpLabelType tmpLabel;
BlpCatType i;

success = BlpPolSetLevel(LOW_LEVEL, &tmpLabel);
if (success == NO_ERROR) {

for (i=0; (i < MAX SEC CATS) && (success == NO_ERROR); ++i)

{
success = BlpPolDelCategory(i, StmpLabel

}

if (success == NO_ERROR) {
*secLabel = tmpLabel;

}
}

return(success);
} // BlpPolInitLabel

//

// Function:
// BlpPolSetLevel
// Inputs:
// secLevel The secrecy level to put into the input secLabel.
// Outputs:
// secLabel The label to modify by setting its secrecy level.
// <result> The success or failure of the operation. A value of
// NO_ERROR indicates a success, while any other value
// indicates an error.
// Description:
// This entry point is used to set the level portion of the BLP
// secrecy level to a given value.
//

152

int BlpPolSetLevel(const BlpLevelType secLevel,
BlpLabelType *secLabel)

{
int success = NO_ERROR;

if (secLevel < MAX_SEC_LEVELS) {
// Get rid of the current level in the label
*secLabel = (*secLabel) & ERASE_LEVEL;

// Now put the new level in
*secLabel = (*secLabel) | ((BlpLabelType) secLevel)■;

}
else {

success = BLPPOL_BADLEVEL;
}

return(success);
} // BlpPolSetLevel

//
// Function:
// BlpPolGetLevel
// Inputs:
// secLabel The secrecy label containing the secrecy level to be
// copied and returned to the caller.
// Outputs:
// secLevel The secrecy level that is extracted from the input
// secLabel.
// <result> The success or failure of the operation. A value of
// NO_ERROR indicates a success, while any other value
// indicates an error.
// Description:
// This entry point is used to return the current BLP secrecy level
// of a given BLP secrecy label.
//
int BlpPolGetLevel(const BlpLabelType secLabel,

BlpLevelType *secLevel)
{

int success = NO_ERROR;
BlpLevelType tmpLevel;

// Get rid of any categories that are turned on
tmpLevel = ((BlpLevelType) secLabel) & ERASE_CATS;

if (tmpLevel < MAX_SEC_LEVELS) {
*secLevel = tmpLevel;

}
else {

success = BLPP0LJ3ADLEVEL;
}

return(success);
} // BlpPolGetLevel

153

//
// Function:
// BlpPolAddCategory
// Inputs:
// category
//
// Outputs:

secLabel

The specific category to add to the current set of
categories in a secrecy label.

The secrecy label with the given category added to
its set of stored categories.
The success or failure of the operation. A value of
NO_ERROR indicates a success, while any other value
indicates an error.

//
//
// <result>
//
//
// Description:
// This entry point is used to add a particular category to the set
// of categories stored in a given BLP secrecy label. A category is
// referenced by its numerical value.

//
int BlpPolAddCategory! const BlpCatType category,

BlpLabelType *secLabel)

int success = NO_ERROR;
BlpLabelType tmpLabel;

if (category < MAX_SEC_CATS) {
tmpLabel = 0x0001;
tmpLabel = tmpLabel « (NUM_LEVEL_BITS + category);
*secLabel = (*secLabel) I tmpLabel;

}
else {

success = BLPPOL_BADCATEGORY;.

}

return(success);
} // BlpPolAddCategory

//

// Function:
// BlpPolDelCategory
// Inputs:
// category
//
// Outputs:

secLabel //
//
//
//
//

The specific category to delete from the current set
of categories in a secrecy label.

<result>

The secrecy label with the given category deleted
from its set of stored categories.
The success or failure of the operation. A value of
NO_ERROR indicates a success, while any other value
indicates an error.

// Description:
// . This entry point is used to delete a particular category to the
// set of categories stored in a given BLP secrecy label. A
// category is referenced by its numerical value.
//

int BlpPolDelCategory(const BlpCatType category,
BlpLabelType *secLabel)

{

154

int success = NO_ERROR;
BlpLabelType tmpLabel;

if (category < MAX_SEC_CATS) {
tmpLabel = 0x0001;
tmpLabel = -(tmpLabel « (NUM_LEVEL_BITS + category));
*secLabel = (*secLabel) & tmpLabel;

}
eise {

success = BLPPOLJ3ADCATEGORY;
}

return(success);
} // BlpPolDelCategory

// _
// Function:
// BlpPolTestCategory
// Inputs:
// secLabel The secrecy label to use when testing whether the
// category is currently present (INCLUDED) or not
// (EXCLUDED).
// catgory The specific category to look for.
// Outputs:
// status A boolean value indicating whether the category is
// present (TRUE) or not (FALSE).
// <result> The success or failure of the operation. A value of
// NO_ERROR indicates a success, while any other value
// indicates an error.
// Description:
// This entry point is used to test whether a particular category is
// in the set of stored categories in the given BLP secrecy label.
//
int BlpPolTestCategory(const BlpLabelType secLabel,

const BlpCatType category,
Boolean *status)

{
int success = NO_ERROR;
*status = FALSE;

if (category < MAX_SEC_CATS) {
*status = secLabel » (NUM_LEVEL_BITS + category);

}
else {

success = BLPPOL_BADCATEGORY;
}

return(success);
} // BlpPolGetCategory
// END OF blppol_getset.c

155

//
//
//
//
//
//
//
//
//
//
//
//
//

3. blppoI_access.c

File: blppol_access.c

Description: This is the implementation file for the following entry-
points of the Bell and LaPadula (BLP) Policy Module:

1. BlpPolDominates
2. BlpPolRead
3. BlpPolWrite

Created: 29-Jul-99 (P. Clark)

Modifications:

#include <pel/blppol.h>

//

// Function:
// BlpPolDominates
// Inputs:
// highLabel
//
// lowLabel
//
// Outputs:
// dominates
//
// <result>
//
//
// Description:

This entry point compares the first BLP secrecy label with the
second secrecy label and communicates whether the first label
dominates the second label.

The BLP secrecy label to be tested for dominance
against lowLabel.
The BLP secrecy label to be tested for dominance
against highLabel.

A value of TRUE or FALSE, indicating whether the
input highLabel dominates the input lowLabel.
The success or failure of the operation. A value of
NO_ERROR indicates a success, while any other value
indicates an error.

//
//
//
//
int BlpPolDominates(const BlpLabelType

const BlpLabelType
Boolean

highLabel,
lowLabel,

*dominates)

{
int success =
int bit;
int done;
BlpLevelType levelHigh;
BlpLevelType levelLow;
Boolean catHigh;
Boolean catLow;

NO ERROR;

*dominates = FALSE;
success = BlpPolGetLevel(highLabel, SlevelHigh);

156

if (success == NO_ERROR) {
success = BlpPolGetLevel(lowLabel, SlevelLow);

}

if ((success == NO_ERROR) && (levelHigh >= levelLow)) {
// make sure that the categories in highLabel are a
// superset of the categories in lowLabel.

++bit) {
for (bit=0, done=FALSE; (bit<MAX_SEC_CATS) && (!done)

success = BlpPolTestCategory(
highLabel,
bit,
ScatHigh);

if (success == NO_ERROR) {
success = BlpPolTestCategory(

lowLabel,
bit,
ScatLow);

} else {
done = TRUE;

}
if (success == NO_ERROR) {

if ((catHigh==FALSE) && (catLow==TRUE)) {
// high doesn't dominate low
done = TRUE;

}
}

}
if (done == FALSE) {

*dominates = TRUE;
}

}

return(success);
} // BlpPolDominates

//

// Function:
// BlpRead
// Inputs:
// subjectLabel The BLP secrecy label for the subject requesting
// read access.
// objectLabel The BLP secrecy label for the object to be read.
// Outputs:
// access A value of ALLOWED or DISALLOWED, indicating whether
// the read operation requested by the associated
// subject is allowed for the assocated object, or
// whether it should be disallowed.

157

// <result> The success or failure of the operation. A value of
// NO_ERROR indicates a success, while any other value
// indicates an error.
// Description:
// The entry point determines whether read access is allowed by the
// Bell and LaPadula policy, given the input subject and object
// secrecy labels.
//
int BlpPolRead(const BlpLabelType subjectLabel,

const BlpLabelType objectLabel,
Boolean *access)

{
int success;
Boolean dominates;

success = NO_ERROR;
dominates = FALSE;
*access = DISALLOWED;

success = BlpPolDominates(subjectLabel, objectLabel,
sdominates);

if ((success == NO_ERROR) && (dominates)) {
*access = ALLOWED;'

}

return(success);
} // BlpPolRead

//

// Function:
// BlpWrite
// Inputs:
// subjectLabel The BLP secrecy label for the subject requesting
// write access.
// objectLabel The BLP secrecy label for the object to be modified
// Outputs:
// allowed
//
//
//
// <result>
//
//
// Description:

This entry point determiens whether a subject may have write
access, with respect to the Bell and LaPadula policy, given the
input subject and object secrecy labels. A write opeartion is
only allowed if both labels are valid and equal.

A boolean value of TRUE or FALSE, indicating whether
the write operation requested by the associated
subject is allowed for the assocated object (TRUE),
or whether it should be disallowed (FALSE).
The success or failure of the operation. A value of
zero indicates a success, while any other value
indicates an error.

//
//
//
//
//

int BlpPolWrite(const BlpLabelType subjectLabel,
const BlpLabelType objectLabel,

Boolean *access)

{

158

int success;
Boolean dominates;

success = NO_ERROR;
dominates = FALSE;

success = BlpPolDominates(subjectLabel, objectLabel, &dominates
);

if ((success == NO_ERROR) && (dominates)) {
success = BlpPolDominates(

objectLabel, subjectLabel, Sdominates);

if ((success == NO_ERROR) && (dominates)) {
*access = ALLOWED;

}
}

return(success);
} // BlpPolRead

// END OF blppol_access.c

C. LABEL MANAGER (LBL_MGR)

1. Iblmgr.h

//
// File: Iblmgr.h
//
// Description: This file contains the external interface to the Label
// Manager module (LBL_MGR).
//
// Created: 04-Aug-99 (P. Clark)
//
// Modifications:
// _ _

#ifndef _LBLMGR_H_
#define _LBLMGR_H_

#include <pel/peltyp.h>
#include <pel/blppol.h>
#include <pel/bibpol.h>

#define MAX_HRL_STR 256
#define DELIMETER ':'

typedef Bits64 PolicyLabelType;

159

extern Boolean LblMgrlsValid(

extern void LblMgrlnitLabel

extern int LblMgrBinToStr(

extern int LblMgrStrToBin(

extern int LblMgrGetBlp(

extern int LblMgrGetBiba(

extern int LblMgrSetBlp(

extern int LblMgrSetBiba(

const PolicyLabelType

(PolicyLabelType

const PolicyLabelType
char

const char
PolicyLabelType

const PolicyLabelType
BlpLabelType

const PolicyLabelType
BibLabelType

const BlpLabelType
PolicyLabelType

const BibLabelType
PolicyLabelType

binaryLabel);

*binarylabel);

binaryLabel,
stringLabel[]);

stringLabel[],
*binaryLabel);

policyLabel,
*secrecyLabel) ;

policyLabel,
*integrityLabel)

secrecyLabel,
*policyLabel);

integrityLabel,
*policyLabel) ;

1800
LBLMGR_ERRBASE
LBLMGR_ERRBASE+1
LBLMGR ERRBASE+2

// Error codes returned by this module.
//
#define LBLMGR_ERRBASE
#define LBLMGR_BADSTRING
tdefine LBLMGR_BADLABEL
tdefine LBLMGR_UNEXPECTED

#endif

// EOF for lblmgr.h

2. lblmgr_getset.c

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
II

File: lblmgr getset.c

Description: This is the implementation file for the following
external entry points for the Label Manager module (LBL_MGR)

LblMgrlsValid()
LblMgrlnitLabel()
LblMgrGetBlp()
LblMgrSetBlp()
LblMgrGetBiba()
LblMgrSetBiba()

Created: 04-Aug-99 (P. Clark)

Modifications:

160

#include <pel/peltyp.h>
#include <pel/blppol.h>
#include <pel/bibpol.h>
#include <pel/lblmgr.h>

#define MIN_VERSION 1
#define MAX_VERSION 15
#define CUR_VERSION 1
#define NUM_VERSION_BITS 4
#define SECRECY_MASK OxOffO
#define VERSION MASK OxOOOf

// Where L is of type PolicyLabelType
//
#define GET_SECRECY(L) ((L & SECRECY MASK) » NUM VERSION BITS)

//
// Function:
// LblMgrlnitLabel
// Inputs:
// <none>
// Outputs:
// binaryLabel An initialized Policy Label.
// Description:
// This entry point is used to initialize a Policy Label in two
// ways:
// 1) properly set the version field to avoid LBLMGR_BADLABEL
// errors;
// 2) getting initialized secrecy and integrity labels and storing
// them in the Policy Label.
//
void LblMgrlnitLabel(PolicyLabelType *binaryLabel)
{

// NOTE THAT INTEGRITY LABELS ARE NOT INITIALIZED YET

BlpLabelType tmpSecrecy;

*binaryLabel = CUR_VERSION;

BlpPolInitLabel(StmpSecrecy) ;

LblMgrSetBlp(tmpSecrecy, binaryLabel);

} // LblMgrlnitLabel()

//
// Function:
// LblMgrlsValid
// Inputs:
// binaryLabel The binary Policy Label to test for validity.

161

// Outputs:
// <result> A value of VALID is returned if the input
// binaryLabel is valid. Otherwise, a value of
// INVALID is returned.
// Description:
// This entry point is used to test whether a given label is valid
// or not.
//
Boolean LblMgrIsValid(const PolicyLabelType binaryLabel)

{
unsigned int lblVersion;
Boolean result;

result = VALID;
lblVersion = (unsigned int)(binaryLabel & VERSION_MASK);

if ((lblVersion < MIN_VERSION) || (lblVersion > MAX_VERSION)) {
result = INVALID;

}

return(result);
} // LblMgrlsValidO

//

// Function:
// LblMgrGetBlp
// Inputs:
// policyLabel A binary Policy Label.
// Outputs:
// secrecyLabel The BLP secrecy portion of the input Policy Label.
// <result> The success or failure of the operation. A value
// of NO_ERROR indicates a success, while any other
// value indicates an error.
// Description:
// This entry point is used to copy the BLP portion of a Policy
// Label and return it to the caller.
//
int LblMgrGetBlp(const PolicyLabelType policyLabel,

BlpLabelType *secrecyLabel)

{
int success;
unsigned int lblVersion;
PolicyLabelType tmp;

success = NO_ERROR;
lblVersion = (unsigned int)(policyLabel & VERSION_MASK) ;'

if ((lblVersion < MIN_VERSION) || (lblVersion > MAX_VERSION)) {
success = LBLMGR_BADLABEL;

}
else {

// Perform processing based on the version number
// of the Policy Label
switch (lblVersion) {

case 1: {

162

*secrecyLabel = GET_SECRECY(policyLabel);
break;

}
default: {

// This should never happen
success = LBLMGRJJNEXPECTED;
break;

}
}

}

return(success)
} // LblMgrGetBlp ()

//

// Function:
// LblMgrSetBlp
// Inputs:
// secrecyLabel The secrecy label to copy into the Policy Label.
// Outputs:
// policyLabel A Policy Label with the input secrecy label
// properly installed.
// <result> The success or failure of the operation. A value
// of NO_ERROR indicates a success, while any other
// value indicates an error.
// Description:
// This entry point is used to set the BLP secrecy portion of a
// Policy Label.
//

int LblMgrSetBlp(const BlpLabelType secrecyLabel,
PolicyLabelType *policyLabel)

{
int success;
unsigned int lblVersion;
PolicyLabelType tmpSec;
PolicyLabelType tmpPol;

success = NO_ERROR;
lblVersion = (unsigned int) ((*policyLabel) & VERSION_MASK);

if ((lblVersion < MIN_VERSION) || (lblVersion > MAX_VERSION)) {
success = LBLMGR_BADLABEL;

}
else {

// Perform processing based on the version number
// of the Policy Label
switch (lblVersion) {

case 1: {
// 1st get rid of old secrecy label
tmpPol = (*policyLabel) & (~SECRECY_MASK);

// then copy in the new stuff
, tmpSec = secrecyLabel;
tmpPol = tmpPol | (tmpSec « NUM_VERSION_BITS);
*policyLabel = tmpPol;

163

break;
}
default: {

// This should never happen
success = LBLMGRJJNEXPECTED;
break;

}
}

}

return(success);
} // LblMgrSetBlp()

// EOF lblmgr_getset.c

D. META-POLICY MANAGER (POL_MGR)

1. polmgr.h

//
// File: polmgr.h
//
// Description: This file contains the external interface to the Meta-
// Policy Manager (POL_MGR).
//
// Created: 16-Aug-99 (P. Clark)
//
// Modifications:
//

#ifndef _POLMGR_H_
tdefine _POLMGR_H_

#include <pel/lblmgr.h>

extern int PolMgrDominates(const PolicyLabelType highLabel,
const PolicyLabelType lowLabel,

Boolean *dominates);
extern int PolMgrRead(const PolicyLabelType subjectLabel,

const PolicyLabelType objectLabel,
Boolean *allowed);

extern int PolMgrWrite(const PolicyLabelType subjectLabel,
const PolicyLabelType objectLabel,

Boolean *allowed);

tendif

// EOF for polmgr.h

164

2. polmgr.c

//
// File: polmgr.c
//
// Description: This is the implementation file for the Meta-Policy
// Manager (POL_MGR). The following external entry points are
// implemented in this file:
// 1. PolMgrDominates()
// 2. PolMgrReadO
// 3. PolMgrWrite ()
//
// Created: 16-Aug-99 (P. Clark)
//
// Modifications:
// :

tinclude <pel/peltyp.h>
#include <pel/blppol.h>
#include <pel/lblmgr.h>
#include <pel/polmgr.h>

//.

// Function:
// PolMgrDominates.
// Inputs:
// highLabel The Policy Label to use when testing for dominance.
// lowLabel The Policy Label to use as the dominated label.
// Outputs:
// dominates TRUE indicates that highLabel dominates lowLabel.
// FALSE indicates that highLabel does not dominate
// lowLabel. It cannot be assumed that lowLabel
// dominates highLabel if FALSE is returned.
// <result> The success of failure of the operation. A value of
// NO_ERROR indicates a success, while any other value
// indicates an error.
// Description:
// This entry point is used to test whether one Policy Label
// dominates another.
//

int PolMgrDominates(const PolicyLabelType highLabel,
const PolicyLabelType lowLabel,

Boolean *dominates)
{ II **

// NOTE THAT THE BIBA POLICY IS NOT YET BEING CALLED HERE
// **

int success;
BlpLabelType blpLow;
BlpLabelType blpHigh;

success = NO ERROR;

165

*dominates = FALSE;

success = LblMgrGetBlp(lowLabel, SblpLow);

if (success == NO_ERROR) {
success = LblMgrGetBlp(highLabel, &blpHigh);

}

if (success == NO_ERROR) {
success = BlpPolDominates(blpHigh, blpLow, dominates);

}

return(success);
} // PolMgrDominatesO

//
// Function:
// PolMgrRead
// Inputs:
// subjectLabel The binary Policy Label representing the level of

the subject that wants to read the object.
The binary Policy Label representing the level of
the object to be read.

objectLabel
//
//
//
II Outputs:
// access
//
//
//
//
//
//
//

<result>

A value of ALLOWED is returned if the subject
associated with the input subjectLabel is allowed to
read the object associated with the input
objectLabel. Otherwise a value of DISALLOWED is
returned.
The success or failure of the operation. A value of
NO_ERROR indicates a success, while any other value
indicates an error.

// Description:
// This entry point is used to determine whether the associated
// subject should be allowed to read the associated object, given
// the subject and object Policy Labels. The operation is allowed
// if the input subjectLabel dominates the input objectLabel.
//
int PolMgrRead(const PolicyLabelType subjectLabel,

const PolicyLabelType objectLabel,
Boolean *access)

{
int success;
Boolean result;

success = NO_ERROR;
result = FALSE;
*access = DISALLOWED;

success = PolMgrDominates(subjectLabel, objectLabel, &result);

if ((success == NO_ERROR) && (result == TRUE)) {
*access = ALLOWED;

}

166

return(success);
} // PolMgrReadC

// _
// Function:
// PolMgrWrite
// Inputs:
// subjectLabel The binary Policy Label representing the .level of
// the subject that wants to write the object.
// objectLabel The binary Policy Label representing the level of
// the object to be modified.
// Outputs:
// access
//
//
//
//
//
//
//
// Description:

This entry point is used to determine whether the associated
subject should be allowed to write the associated object, given
the subject and object Policy Labels. The only way that write
permission will be allowed is if the subject and object labels
are equal, viz., the two labels dominate each other.

<result>

A value of ALLOWED is returned if the subject
associated with the input subjectLabel is allowed to
write the object associated with the input
objectLabel.
Otherwise, a value of DISALLOWED is returned.
The success or failure of the operation. A value of
NO_ERROR indicates a success, while any other value
indicates an error.

//
//
//
//
//
//
int PolMgrWrite(const PolicyLabelType subjectLabel,

const PolicyLabelType objectLabel,
Boolean *access)

{
int success;
Boolean dominates;

success = NO_ERR0R;
*access = DISALLOWED;
dominates = FALSE;

);
success = PolMgrDominates(subjectLabel, objectLabel, Sdominates

if ((success == NO_ERROR) && (dominates)) {
success = PolMgrDominates (

objectLabel, subjectLabel, Sdominates);

if ((success == NO_ERROR) && (dominates)) {
*access = ALLOWED;

}
}

return(success);
} // PolMgrWrite()

// END OF polmgr.c

167

THIS PAGE INTENTIONALLY LEFT BLANK

168

LIST OF REFERENCES

1. Critical Foundations, Protecting America's Infrastructures, The Report of the
President's Commission on Critical Infrastructure Protection, October, 1997.

2. The Clintion Administration's Policy on Critical Infrastructure Protection:
Presidential Decision Directive 63, White Paper, May 22,1998,
http://l 31.84.1.84/6263summary.html

3. Gasser, Morrie, Building a Secure Computer System. New York: Van Nostrand
Reinhold, 1988.

4. Pfleeger, Charles P., Security in Computing. Second edition, Upper Saddle River:
Prentice Hall, Inc., 1997.

5. Bishop, Matt, History of Computer Security Project, Early Papers in the Field of
Computer Security, CD-ROM #1, University of California at Davis, October 1998.

6. Department of Defense, Security Requirements for Automatic Data Processing (ADP)
Systems, Directive 5200.28, April 1978.

7. Department of Defense, Trusted Computer System Evaluation Criteria, DOD
5200.28-STD, December 1985.

8. Bell, D.E., La Padula, L.J., Secure Computer System: Unified Exposition andMultics
Interpretation, Electronic Systems Division, Air Force Systems Command, United
States Air Force, Hanscom Air Force Base, Report MTR-2997 Rev. 1, March, 1976.

9. LaPadula, Leonard J., Bell D. Elliott, MITRE Technical Report 2547, Volume II,
Journal of Computer Security, Volume 4, Nos. 2,3, pp. 239-263,1996.

10. Higgins, John C, "Information Security as a Topic in Undergraduate Education of
Computer Scientists," Proceedings of the 12th National Computer Security
Conference, National Institute of Standards and Technology / National Computer
Security Center, pp. 553-557, October 1989.

11. http://agn-www.informatik.uni-hamburg.de/people/lott/rsbac

12. Beck, Michael, Böhme, Harald, Dziadzka, Mirko, Kunitz, Ulrich, Magnus, Robert,
Verworner, Dirk, Linux Kernel Internals. Second edition, New York: Addison-
Wesley, 1998.

13. Irvine, Cynthia E., "A Multilevel File System for High Assurance", Proceedings of
the 1995 IEEE Symposium on Security and Privacy, Institute of Electrical and
Electronics Engineers, Inc. [IEEE], pp. 78-87,1995.

169

14. Kramer, Steven, "Linus IV - An Experiment in Computer Security", Proceedings of
the 1984 Symposium on Security and Privacy, Institute of Electrical and Electronics
Engineers, Inc. [IEEE], pp. 24-31,1984.

15. Final Evaluation Report, Trusted Information Systems, Inc., Trusted XENIX version
4.0, National Computer Security Center, Report CSC-EPL-92/001 .A, January, 1994.

16. Final Evaluation Report, Silicon Graphics Computer Systems, Inc., Trusted IRIX/B,
National Computer Security Center, Report CSC-EPL-95/001, February, 1995.

17. Final Evaluation Report, Wang Federal Incorporated, XTS-300, National Computer
Security Center, Report CSC-EPL-92/003.B, July 1995.

18. Draft Security Interface for the Portable Operating System Interface for Computer
Environments, Technical Committee on Operating Systems and Operational
Environments of the IEEE Computer Society, P1003.6 / Dl 1, May 1991.

19. Saltzer, Jerome H., Schroeder, Michael D., "The Protection of Information in
Computer Systems", Proceedings of the IEEE, Volume 63, pp. 1278-1308, 1974.

20. Summers, Rita C, Secure Computing, Threats and Safeguards. New York: McGraw-
Hill, 1997.

21. Levin, Tim, Padilla, Steven J., Irvine, Cynthia E., "A Formal Model for Unix Setuid",
Proceedings of the 1989 IEEE Symposium on Security and Privacy, Institute of
Electrical and Electronics Engineers, Inc. [IEEE], pp. 73-83,1989.

22. Ko, Calvin, Rushchitzka, Manfred, Levitt, Karl, "Execution of Security-Critical
Programs in Distributed Systems: A Specification-based Approach", Proceedings of
the 1989 IEEE Symposium on Security and Privacy, Institute of Electrical and
Electronics Engineers, Inc. [IEEE], pp. 175-187,1997.

23. Saydjari, O. Sami, Beckman Joseph M., Leaman, Jeffrey R., "LOCK Trek:
Navigating Uncharted Space", Proceedings of the 1989 IEEE Symposium on Security
and Privacy, Institute of Electrical and Electronics Engineers, Inc. [IEEE], pp. 167-
175, 1989.

24. Ilgun, Koral, "USTAT: A Real-time Intrusion Detection System for UNIX",
Proceedings of the 1989 IEEE Symposium on Security and Privacy, Institute of
Electrical and Electronics Engineers, Inc. [IEEE], pp. 16-28,1993.

25. A Guide to Understanding Covert Channel Analysis of Trusted Systems, National
Computer Security Center, NCSC-TG-030, Version 1, November 1993.

170

26. Lampson, Butler W., "A Note of the Confinement Problem", Communications of the
ACM, Volume 16, pp. 613-615,1973.

27. Card, Remy, Dumas, Eric, Mevel, Franck, The Linux Kernel Book. West Sussex:
John Wiley and Sons, 1998.

28. Rusling, David A. The Linux Kernel, http://metalab.unc.edu/mdw/LDP/tlk/tlk.html

171

THIS PAGE INTENTIONALLY LEFT BLANK

172

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Cynthia E. Irvine
Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Dennis Volpano
Computer Science Department Code CS/Vd
Naval Postgraduate School
Monterey, CA 93943-5000

6. Mr. James P. Anderson
James P. Anderson Company
Box 42
Fort Washington, PA 19034

7. Paul Pittelli
National Security Agency
Research and Development Building
R2
9800 Savage Road
Fort Meade, MD 20755-6000

8. CAPT Dan Galik
Space and Naval Warfare Systems Command
PMW 161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92210-3127

173

Commander, Naval Security Group Command
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585

10. Mr. George Bieber
Defense Information Systems Agency
Center for Information Systems Security
5113 Leesburg Pike, Suite 400
Falls Church, VA 22041 -3230

11. Louise Davidson
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

12. Lt. Col. Timothy Fong
Defense Information Systems Agency
5600 Columbia Pike
Falls Church, VA 22041

13. Mr. Paul Clark
Computer Science Department Code CS/Cp
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000

174

